14 of 15
BARZEGAR AMIRI OLIA ET AL.
S. Zhu, W. He, F.‐T. Luo, W. J. Jahng, M. Frost, H. Liu, ACS
[35] L. W. Deady, W. L. Finlayson, Aust. J. Chem. 1984, 37, 1625.
Appl. Mater. Interfaces 2013, 5, 4107. c) W.‐T. Shiue, Y.‐H.
Chen, C.‐M. Wu, G. Singh, H.‐Y. Chen, C.‐H. Hung, W.‐F.
Liaw, Y.‐M. Wang, Inorg. Chem. 2012, 51, 5400.
[
[
[
36] R. Dennington, T. A. Keith, J. M. Millam, GaussView, Version 5,
Semichem Inc., Shawnee Mission, KS 2009.
37] L. Goerigk, J. Moellmann, S. Grimme, Phys. Chem. Chem. Phys.
[
18] a) M. H. Lim, S. J. Lippard, Acc. Chem. Res. 2006, 40, 41. b) M.
H. Lim, S. J. Lippard, Inorg. Chem. 2006, 45, 8980. c) M. H. Lim,
B. A. Wong, W. H. Pitcock, D. Mokshagundam, M.‐H. Baik, S.
J. Lippard, J. Am. Chem. Soc. 2006, 128, 14364. d) L. E.
McQuade, S. J. Lippard, Inorg. Chem. 2010, 49, 7464. e) S. C.
Bourdette, G. K. Walkup, B. Spingler, R. Y. Tsien, S. J. Lippard,
J. Am. Chem. Soc. 2001, 123, 7831. f) M. D. Pluth, M. R. Chan,
L. E. McQuade, S. J. Lippard, Inorg. Chem. 2011, 50, 9385.
2009, 11, 4611.
38] It should be noted, that, unlike the more popular TD‐B3LYP
method, TD‐CAM‐B3LYP has the advantage to being free of
artefacts (i.e., ghost states) and does not rely on uncontrollable
error compensation; see refs. [33], [37] and SI.
[39] M. Seccia, C. Perugini, E. Albano, G. Bellomo, Biochem.
Biophys. Res. Commun. 1996, 220, 306.
[
[
19] V. C. Ezeh, T. C. Harrop, Inorg. Chem. 2013, 52, 2323.
[40] We determined the fluorescence quantum yield, Φ
CB5 system (in TBS at pH 7 with 1% DMSO, λex = 415 nm,
using coumarin 519 as reference). CB5: Φ = 3.0 %, Cu(II)‐
=12.3 %.
F
, for the
20] a) M. Barzegar Amiri Olia, A. Zavras, C. H. Schiesser, S.‐A.
Alexander, Org. Biomol. Chem. 2016, 14, 2272. b) M. M. Sadek,
M. Barzegar Amiri Olia, C. J. Nowell, N. Barlow, C. H.
Schiesser, S. E. Nicholson, R. S. Norton, Bioorg. Med. Chem.
F
•
F F
CB5: Φ = 2.6 %, Cu(II)‐CB5 + NO : Φ
[41] a) L. Yuan, W. Lin, Y. Xie, B. Chen, S. Zhu, J. Am. Chem. Soc.
2012, 134, 1305. b) C. Yu, Y. Wu, F. Zeng, S. Wu, J. Mater.
Chem. B 2013, 1, 4152. c) R. Miao, L. Mu, H. Zhang, H. Xu,
G. She, P. Wang, W. Shi, J. Mater. Chem. 2012, 22, 3348. d) L.
Tan, A. Wan, H. Li, Analyst 2013, 138, 879. e) G. K. Vegesna,
S. R. Sripathi, J. Zhang, S. Zhu, W. He, F.‐T. Luo, W. J. Jahng,
M. Frost, H. Liu, ACS Appl. Mater. Interfaces 2013, 5, 4107.
2
017, 25, 5743.
[
21] The detailed mechanism of the fluorescence quenching in the
Cu(II) complexes is not clear. For recent reviews of fluores-
cence quenching and sensing mechanisms see a) D. Escudero,
Acc. Chem. Res. 2016, 49, 1816. b) G.‐Y. Li, K.‐L. Han, Wiley
Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1351.
[
42] S.‐A. Alexander, E. M. Rouse, J. M. White, N. Tse, C. Kyi, C. H.
[
22] a) D. Olmedo, R. Sancho, L. M. Bedoya, J. L. Lopez‐Perez, E.
del Olmo, E. Munoz, J. Alcami, M. P. Gupta, A. San Feliciano,
Molecules 2012, 17, 9245. b) M. D. Mertens, S. Hinz, C. E.
Müller, M. Gütschow, Bioorg. Med. Chem. 2014, 22, 1916.
Schiesser, Chem. Commun. 2015, 51, 3355. see also ref. [3a].
[43] Nanomolar concentrations of NO• are typically present in
healthy bacterial cells, where it is produced through
denitrifying and nitrifying microorganisms; see also P. G.
Wang, T. B. Cai, N. Taniguchi (Eds), Nitric Oxide Donors: For
Pharmaceutical and Biological Applications, Wiley‐VCH Verlag
GmbH & Co. KGaA, Weinheim 2005.
[
[
23] a) X. Huang, Y. Dong, Q. Huang, Y. Cheng, Tetrahedron Lett.
2
013, 54, 3822. b) L. Long, L. Zhou, L. Wang, S. Meng, A. Gong,
F. Du, C. Zhang, Org. Biomol. Chem. 2013, 11, 8214.
24] The exposure time during the confocal microscopy studies (ca.
[44] a) W. G. Zumft, Microbiol. Mol. Biol. Rev. 1997, 61, 533. b) W. G.
1
min) is too short to cause damage to cell H.‐Y. Youn, R.
Zumft, J. Mol. Microbiol. Biotechnol. 2002, 4, 277.
Chou, A. P. Cullen, J. G. Sivak, J. Photochem. Photobiol. B.
•
2
009, 95, 64. This was confirmed in NO imaging studies in
[45] Since the cytoplasm of macrophages is more complex than the
bacterial cytoplasm, it is reasonable to assume that displace-
ment of Cu(II) in our experiments results from the reaction
macrophages using the CB5 probe; see ref. [20b].
[
25] M. Lee, N. G. Gubernator, D. Sulzer, D. Sames, J. Am. Chem.
Soc. 2010, 132, 8828.
•
of the probe with NO .
[
[
[
[
[
26] S. Protti, A. Mezzetti, J. Mol. Liq. 2015, 205, 110.
27] P. Bourbon, Q. Peng, C. Ferraudi, C. Stauffacher, O. Wiest, P.
47] J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev.
Lett. 2003, 91, 146401.
Helquist, J. Org. Chem. 2012, 77, 2756.
[
28] D. L. Gerrard, M. W. Maddams, Spectrochim. Acta A 1978, 34,
48] a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys.
1
117.
2
010, 132, 154104. b) S. Grimme, S. Ehrlich, L. Goerigk,
[
29] a) A. E. Lanterna, M. González‐Béjac, M. Frenette, J. S.
Scaiano, Photochem. Photobiol. Sci. 2017, 16, 1284. b) J. Seixas
de Melo, P. F. Fernandes, J. Mol. Struct. 2001, 565‐566, 69.
J. Comput. Chem. 2011, 32, 1456.
[49] F. Weigend, S. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
[
30] a) J. Küpper, M. Schmitt, K. Kleinermanns, Phys. Chem. Chem.
Phys. 2002, 4, 4634. b) V. K. Lacey, A. R. Parrish, S. Han, Z.
Shen, S. P. Briggs, Y. Ma, L. Wang, Angew. Chem. Int. Ed.
[50] a) L. Goerigk, J. R. Reimers, J. Chem. Theory Comput. 2013, 9,
3240. b) M. Steinmetz, A. Hansen, S. Ehrlich, T. Risthaus, S.
Grimme, Top. Curr. Chem. 2015, 365, 1.
2
011, 50, 8692.
31] T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393,
1.
[
51] L. Goerigk, S. Grimme, Wiley Interdiscp. Rev. Comput. Mol. Sci.
[
2014, 4, 576.
5
[
[
52] L. Goerigk, S. Grimme, J. Chem. Theory Comput. 2011, 7, 291.
[
[
[
32] A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639.
53] a) L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13,
6670. b) L. Goerigk, A. Hansen, C. Bannwart, S. Ehrlich, A.
Najibi, S. Grimme, Phys. Chem. Chem. Phys. 2017, 19, 32184.
33] L. Goerigk, S. Grimme, J. Chem. Phys. 2010, 132, 184103.
34] R. K. Bansal, Heterocyclic Chemistry, 3rd ed., New Age Interna-
tional (P), Ltd. 1999.
[54] F. Neese, Wiley Interdiscp. Rev. Comput. Mol. Sci. 2012, 2, 73.