Scheme 3
oxidation of the resulting crude allylic alcohol gave the enone
2b in good overall yield.
The enantioselectivity observed was comparable with that
obtained in the previous synthesis,5 suggesting that, at least for
substrates of this type, asymmetric PTC oxidation is com-
petitive with Sharpless epoxidation chemistry.
In conclusion, we have demonstrated that it is possible to
obtain a,b-epoxyketones in high enantiomeric excess via direct
oxidation of allylic alcohols using asymmetric phase-transfer
catalysis. The operational simplicity of this chemistry should
make it a valuable alternative to existing methodology.
We thank EPSRC and GSK for studentship support (to D. C.
M. T.) and Dr. Jane Stewart (G. S. K.) for helpful discus-
sions.
Fig. 2 Effect of catalyst loading and rate of substrate addition on
enantioselectivity.
Table 1 Enantioselective oxidation of a range of allylic alcohols 4a
Ar
R
Timeb/h
20
Ee of 2c (%)
Notes and references
84
1 See, for example: W. P. Chen and S. M. Roberts, Chem. Commun., 1999,
103; N. W. Cappi, W-P. Chen, R. W. Flood, Y-W. Liao, S. M. Roberts,
J. Skidmore, J. A. Smith and N. M. Williamson, Chem. Commun., 1998,
1159; B. M. Adger, J. V. Barkley, S. Bergeron, M. W. Cappi, B. E.
Flowerdew, M. P. Jackson, R. McCague, T. C. Nugent and S. M. Roberts,
J. Chem. Soc., Perkin Trans. 1, 1997, 3501.
2 For a review on the asymmetric epoxidation of electron-deficient alkenes,
see: M. J. Porter and J. Skidmore, Chem. Commun., 2000, 1215.
3 For selected recent publications relating to the use of quaternary
ammonium PTC in the asymmetric epoxidation of enones, see: W. Adam,
P. B. Rao, H. G. Degen, A. Levai, T. Patonay and C. R. Saha-Moller, J.
Org. Chem., 2002, 67, 259; S. Arai, H. Tsuge, M. Oku, M. Miura and T.
Shioiri, Tetrahedron, 2002, 58, 1623; B. Lygo and D. C. M. To,
Tetrahedron Lett., 2001, 42, 1343; E. J. Corey and F-Y. Zhang, Org.
Lett., 1999, 1, 1287; B. Lygo and P. G. Wainwright, Tetrahedron, 1999,
55, 6289; S. Arai, H. Tsuge and T. Shioiri, Tetrahedron Lett., 1998, 39,
7563; G. Macdonald, L. Alcaraz, N. J. Lewis and R. K. Taylor,
Tetrahedron Lett., 1998, 39, 5433; B. Lygo and P. G. Wainwright,
Tetrahedron Lett., 1998, 39, 1599.
4 For examples of other recent publications relating to the asymmetric
epoxidation of enones, see: W. Adam, P. B. Rao, H. G. Degen and C. R.
Saha-Moller, Eur. J. Org. Chem., 2002, 630; O. Jacques, S. J. Richards
and R. W. F. Jackson, Chem. Commun., 2001, 2712; P. E. Coffey, K. H.
Drauz, S. M. Roberts, J. Skidmore and J. A. Smith, Chem. Commun.,
2001, 2330; P. A. Bentley, R. W. Flood, S. M. Roberts, J. Skidmore, C.
B. Smith and J. A. Smith, Chem. Commun., 2001, 1616; T. Nemoto, T.
Ohshima, K. Yamaguchi and M. Shibasaki, J. Am. Chem. Soc., 2001,
123, 2725; R. F. Chen, C. T. Qian and J. G. de Vries, Tetrahedron, 2001,
57, 9837; C. L. Dwyer, C. D. Gill, O. Ichihara and R. J. K. Taylor, Synlett,
2000, 704.
15
12
15
18
18
20
86
87
86
78
82
80
a Substrate 4 (0.25 mmol) in toluene (1 ml) was added dropwise over 4 h to
a rapidly stirred mixture of quaternary ammonium salt 3 (0.013 mmol),
toluene (0.5 ml), and 15% aqueous sodium hypochlorite (1.0 mmol) at room
temperature. The resulting mixture was then stirred for the time specified.
b Time to 100% conversion to epoxide 2, in all cases the yield of epoxide
was > 90% (by 1H NMR). c ee’s determined to ±3% by HPLC (Chiralpak
AD).
5 C. Hardouin, F. Chevallier, B. Rousseau and E. Doris, J. Org. Chem.,
2001, 66, 1046.
6 For reports that illustrate variations of this approach, see: C. D. Brown, J.
M. Chong and L. Shen, Tetrahedron, 1999, 55, 14233; D. Soullez, G. Ple,
L. Duhamel and P. Duhamel, J. Chem. Soc., Chem. Commun., 1995, 563;
S. M. Graham and G. D. Prestwich, J. Org. Chem., 1994, 59, 2956; M.
Miyashita, M. Hoshino and A. Yoshikoshi, Chem. Lett., 1990, 791; R. G.
Harvey, J. T. Hahn, M. Bukowska and H. Jackson, J. Org. Chem., 1990,
55, 6161.
7 For an alternative method for the direct oxidation of allylic alcohols to
racemic a,b-epoxyketones, see: K. Takai, K. Oshima and H. Nozaki,
Bull. Chem. Soc. Jpn., 1983, 56, 3791.
8 G. A. Mirafzal and A. M. Lozeva, Tetrahedron Lett., 1998, 39, 7263; J-S.
Do and T-C. Chou, Ind. Eng. Chem., 1990, 29, 1095; G. A. Lee and H.
H. Freedman, Isr. J. Chem., 1985, 26, 229.
9 J. Furukawa, S. Iwasaki and S. Okuda, Tetrahedron Lett., 1983, 24,
52.
reactions proceeded to completion within 24 h, and in all cases
high levels of enantioselectivity were obtained.
In order to demonstrate the utility of this chemistry we
examined its application in the synthesis of a,b-epoxyketone 2b
(Scheme 3). The enantioselective synthesis of this material
utilising Sharpless asymmetric epoxidation methodology has
recently been reported5 and so this provided an opportunity to
compare the effectiveness of these two approaches towards
targets of this type. We found that reaction of E-hept-2-enal
with phenylmagnesium bromide,9 followed by asymmetric PTC
CHEM. COMMUN., 2002, 2360–2361
2361