Organic Letters
Letter
Scheme 2. Synthetic Utility of the α,α-Difluoromethyl
Tertiary Alcohol 2a
ACKNOWLEDGMENTS
■
a
This work was partially supported by Normandie Universite
NU), the Region Normandie, the Centre National de la
Recherche Scientifique (CNRS), Universite de Rouen
Normandie (URN), INSA Rouen Normandie, Labex SynOrg
ANR-11-LABX-0029) and Innovation Chimie Carnot (I2C).
́
(
́
́
(
W.-S.H thanks the Labex SynOrg (ANR-11-LABX-0029) for a
doctoral fellowship. T.P. thanks the Institut Universitaire de
France for support and the CNRS Emergence program for
funding. A.B.C. thanks the Labex SynOrg (ANR-11-LABX-
0029) for a chair of excellence.
REFERENCES
■
(
1) (a) Modern Synthesis Processes and Reactivity of Fluorinated
Compounds, 1st ed.; Groult, H., Leroux, F., Tressaud, A., Eds.;
Elsevier, 2017. (b) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.;
Acen
1
2
̃
a, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016,
16, 422. (c) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem.
014, 57, 2832. (d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur,
a
(
a) i. SOCl (1.5 equiv), Et N (3 equiv), DCM, 0 °C, 1 h. ii. RuCl
2 3
3
4
(
(
1 mol %), NaIO (2.2 equiv), MeCN/H O (1:1), rt, 1 h. (b) NaBH
2.8 equiv), DMF, 0 °C, 1 h, then H SO , H O, THF, 0 °C, 1 h. (c)
4
2
V. Chem. Soc. Rev. 2008, 37, 320. (e) Mei, H.; Han, J.; Fustero, S.;
(2) For selected reviews, see: (a) Champagne, P. A.; Desroches, J.;
Hamel, J.-D.; Vandamme, M.; Paquin, J.-F. Chem. Rev. 2015, 115,
2
4
2
NaI (2 equiv), DMF, rt, 45 min, then H SO , H O, THF, 0 °C, 1 h.
2
4
2
(
(
d) NaN (2 equiv), DMF, rt, 1 h, then H SO , H O, THF, 0 °C, 1 h.
3 2 4 2
e) i. H , Pd/C, EtOAc, rt, 16 h. ii. Boc O (2.3 equiv), Et N (3.4
2
2
3
equiv), THF, rt, 2 h.
9
6
073. (b) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115,
83. (c) O’Hagan, D.; Deng, H. Chem. Rev. 2015, 115, 634.
In conclusion, we developed a practical and efficient
protocol to access enantioenriched α,α-difluoromethyl tertiary
alcohols with good to excellent er and good to excellent yields.
Both enantiomers are readily available using either the AD-
mix-α or AD-mix-β as the catalyst. Note that in all cases AD-
mix-α and AD-mix-β gave very similar results, with a slightly
better er. in the case of AD-mix-β. The method was applied to
a broad range of substrates. In addition, we extended this
(
(
d) Charpentier, J.; Fru
e) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
̈
h, N.; Togni, A. Chem. Rev. 2015, 115, 650.
(f) Belhomme, M.-C.; Besset, T.; Poisson, T.; Pannecoucke, X. Chem.
- Eur. J. 2015, 21, 12836. (g) Besset, T.; Poisson, T.; Pannecoucke, X.
Chem. - Eur. J. 2014, 20, 16830. (h) Egami, H.; Sodeoka, M. Angew.
Chem., Int. Ed. 2014, 53, 8294. (i) Liang, T.; Neumann, C. N.; Ritter,
T. Angew. Chem., Int. Ed. 2013, 52, 8214.
(
(
3) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.
4) Sessler, C. D.; Rahm, M.; Becker, S.; Goldberg, J. M.; Wang, F.;
reaction to the CH F analogues, and the products were
2
Lippard, S. J. J. Am. Chem. Soc. 2017, 139, 9325.
5) (a) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011,
11, 455. (b) Ma, J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119.
c) Cahard, D.; Xu, X.; Couve-Bonnaire, S.; Pannecoucke, X. Chem.
obtained in similar yields and er. The scale of the reaction was
increased to 4 mmol to highlight the synthetic utility of the
reaction. In addition, the versatility of the resulting products
was demonstrated through various synthetically useful trans-
formations. We believe that these new building blocks will
found application in the synthesis of new bioactive molecules.
(
1
(
Soc. Rev. 2010, 39, 558. (d) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F.
D. Chem. Rev. 2015, 115, 826.
̊
(6) (a) Slungard, S. V.; Krakeli, T.-A.; Thvedt, T. H. K.; Fuglseth, E.;
Sundby, E.; Hoff, B. H. Tetrahedron 2011, 67, 5642. (b) Abe, C.;
Sugawara, T.; Machida, T.; Higashi, T.; Hanaya, K.; Shoji, M.; Cao,
C.; Yamamoto, T.; Matsuda, T.; Sugai, T. J. Mol. Catal. B: Enzym.
ASSOCIATED CONTENT
Supporting Information
■
*
S
2
2
012, 82, 86. (c) Borzęcka, W.; Lavandera, I.; Gotor, V. J. Org. Chem.
013, 78, 7312. (d) Goushi, S.; Funabiki, K.; Ohta, M.; Hatano, K.;
Matsui, M. Tetrahedron 2007, 63, 4061.
7) (a) Funabiki, K.; Furuno, Y.; Yano, Y.; Sakaida, Y.; Kubota, Y.;
(
Experimental procedures, compound characterization
data, H, C, and NMR spectra of the products and
Matsui, M. Chem. - Asian J. 2015, 10, 2701. (b) Funabiki, K.; Itoh, Y.;
Kubota, Y.; Matsui, M. J. Org. Chem. 2011, 76, 3545. (c) Mikami, K.;
Takasaki, T.; Matsukawa, S.; Maruta, M. Synlett 1995, 1995, 1057.
1
13
19
(d) Mikami, K.; Yajima, T.; Takasaki, T.; Matsukawa, S.; Terada, M.;
Uchimaru, T.; Maruta, M. Tetrahedron 1996, 56, 85.
(8) Cabrera, J. M.; Tauber, J.; Zhang, W.; Xiang, M.; Krische, M. J. J.
Am. Chem. Soc. 2018, 140, 9392.
AUTHOR INFORMATION
■
(
(
9) Ni, C.; Wang, F.; Hu, J. Beilstein J. Org. Chem. 2008, 4, 15.
10) (a) Batisse, C.; Cespedes Davila, M. F.; Castello, M.; Messara,
*
ORCID
*
A.; Vivet, B.; Marciniak, G.; Panossian, A.; Hanquet, G.; Leroux, F. R.
Tetrahedron 2019, 75, 3063. (b) Batisse, C.; Panossian, A.; Hanquet,
G.; Leroux, F. R. Chem. Commun. 2018, 54, 10423.
Notes
(
11) Neves-Garcia, T.; Vel
P. Chem. Commun. 2018, 54, 11809.
12) van der Mei, F. W.; Qin, C.; Morrison, R. J.; Hoveyda, A. H. J.
Am. Chem. Soc. 2017, 139, 9053.
́
ez, A.; Martínez-Ilarduya, J. M.; Espinet,
(
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX