R. Shelkar et al. / Tetrahedron Letters 54 (2013) 106–109
109
Table 3 (continued)
Entry
Substrate
Product
Yieldb (%)
N
HN
CN
N
12
13
N
46
Cl
Cl
H
N
CN
N
36
54
N
N
H3C
CN
H
N
N
14
H3C
N
N
a
Reaction and conditions: nitriles (1 mmol), NaN3 (1.5 mmol), Amberlyst-15 (23 mol %, w/w), DMSO (3 mL), reaction time (12 h), and temperature (85 °C).
Isolated yield.
Yield after first cycle.
Yield after second cycle.
Yield after third cycle.
b
c
d
e
13. Desarro, A.; Ammendola, D.; Zappala, M.; Grasso, S.; Desarro, G. B. Antimicrob.
Agents Chemother. 1995, 39, 232–238.
14. Gaponik, P. N.; Voitekhovich, S. V.; Ivashkevich, O. A. Russ. Chem. Rev. 2006, 75,
507.
was obtained. This indicates that Amberlyst-15 can be used
effectively as a catalyst for the large scale production of tetrazole.
15. Modarresi-Alam, A. R.; Khamooshi, F.; Rostamizadeh, M.; Keykha, H.;
Nasrollahzadeh, M.; Bijanzadeh, H. R.; Kleinpeter, E. J. Mol. Struct. 2007, 841, 61.
16. Wittenberger, S. J.; Donner, B. G. J. Org. Chem. 1993, 58, 4139.
17. Demko, Z. P.; Sharpless, K. B. J. Org. Chem. 2001, 66, 7945.
18. Bosch, L.; Vilarrasa, J. Angew. Chem. 2007, 119, 4000.
19. (a) Kantam, M. L.; Shiva Kumar, K. B.; Sridhar, C. Adv. Synth. Catal. 2005, 347,
1212; (b) Kantam, M. L.; Shiva Kumar, K. B.; Raja, K. P. J. Mol. Catal. A: Chem.
2006, 247, 186; (c) Kantam, M. L.; Balasubrahmanyam, V.; Shiva Kumar, K. B.
Synth. Commun. 1809, 2006, 36; (d) Jin, T.; Kitahara, F.; Kamijo, S.; Yamamoto,
Y. Tetrahedron Lett. 2008, 49, 2824; (e) Matthews, D. P.; Green, J. E.; Shuker, A. J.
J. Comb. Chem. 2000, 2, 19; (f) Gyoung, Y. S.; Shim, J. G.; Yamamoto, Y.
Tetrahedron Lett. 2000, 41, 4193; (g) Amantini, D.; Beleggia, R.; Fringuelli, F.;
Pizzo, F.; Vaccoro, L. J. Org. Chem. 2004, 69, 2896.
Conclusion
In conclusion, we report that Amberlyst-15 is an effective heter-
ogeneous catalyst for the [3+2] cycloaddition of sodium azide and a
wide variety of nitriles to form 5-substituted 1-H-tetrazoles with
excellent to good yields. The catalyst can be easily recovered and
reused.
Acknowledgment
The authors are thankful to the UGC-UPE Green Technology
Centre, New Delhi, India for awarding the fellowship.
21. (a) Das, B.; Damodar, K.; Chouwdhury, N.; Kumar, R. A. J. Mol. Catal. A: Chem.
2007, 274, 148–152; (b) Bhanushali, M. J.; Nandurkar, N. S.; Bhor, M. D.;
Bhanage, B. M. Catal. Commun. 2008, 9, 425–430; (c) Rezayat, M.; Ghaziaskar,
H. S. Green Chem. 2009, 11, 710–715; (d) Kumar, A.; Dixit, M.; Singh, S. P.;
Raghunandan, R.; Maulik, P. R.; Goel, A. Tetrahedron Lett. 2009, 50, 4335–4339;
(e) Ziyauddin, Q. S.; Deshmukh, K. M.; Tambade, P. J.; Bhanage, B. M.
Tetrahedron Lett. 2010, 51, 724–729.
References and notes
1. Hallinan, E. A.; Tsymbalov, S.; Dorn, C. R.; Pitzele, B. S.; Hansen, D. W., Jr. J. Med.
Chem. 2002, 45, 1686–1689.
2. Ford, R. E.; Knowles, P.; Lunt, E.; Marshal, S. M.; Penrose, A. J.; Ramsden, C. A.;
Summers, A. J. H.; Walker, J. L.; Wrigth, D. E. J. Med. Chem. 1986, 29, 538–549.
3. Girijavallabhan, V. M.; Pinto, P. A.; Genguly, A. K.; Versace, R. W.; Eur. Patent EP
274,867, 1988; Chem. Abstr. 1989, 110, 23890.
4. Akimoto, H.; Ootsu, K.; Itoh, F. Eur. Patent EP 530,537, 1993; Chem. Abstr. 1993,
119, 226417.
5. Vieira, E.; Huwyler, S.; Jolidon, S.; Knoflach, F.; Mutel, V.; Wichmann, J. Bioorg.
Med. Chem. Lett. 2005, 15, 4628.
6. Sandmann, G.; Schneider, C.; Boger, P. Z.; Naturforsch, C. Bioscience 1996, 51,
534–539.
7. Wood, E.; Crosby, R. M.; Dickerson, S.; Frye, S. V.; Griffin, R.; Hunter, R. Anti-
Cancer Drug Des. 2001, 16, 1–6.
8. May, B. C. H.; Abell, A. D. J. Chem. Soc., Perkin Trans. 2 2002, 172–178.
9. Herr, R. J. Bioorg. Med. Chem. 2002, 10, 3379.
10. (a) Singh, R. P.; Verma, R. D.; Meshri, D. T.; Shreeve, J. M. Angew. Chem., Int. Ed.
2006, 45, 3584; (b) Xue, H.; Gau, Y.; Twamley, B.; Shreeve, J. M. Chem. Mater.
2005, 17, 191.
22. Singh, A. S.; Bhanage, B. M.; Nagarkar, J. M. Green Chem. Lett. Rev. 2012, 5(1),
27–32.
23. General procedure for the synthesis of Tetrazole.
A mixture of benzonitrile
(103 mg, 1 mmol), sodium azide (97.5 mg, 1.5 mmol), and 3 mL DMSO solvent
was added in a 25 mL round bottomed flask. Further (50 mg, 23 mol %, w/w)
catalyst was added to the reaction mixture. The reaction mixture was heated to
85 °C for 12 h. After completion of the reaction (as monitored by TLC), the
catalyst was separated by simple filtration, washed with diethyl ether and the
filtrate was treated with ethyl acetate (30 mL) and 5 N HCl (20 mL) and stirred
vigorously. The resultant organic layer was separated and the aqueous layer
was again extracted with ethyl acetate (20 mL). The combined organic layers
were washed with water and dried over anhydrous sodium sulfate and were
evaporated under reduced pressure to give the product. The product was
purified by the column chromatography. The structure was confirmed by
spectral analysis (1H NMR, mass and elemental analysis).
Characterization of 5-phenyl 1-H-tetrazole. 1H NMR (300 MHz, CDCl3): d = 8.01–
8.04 (m, 2H), 7.57–7.61 (m, 3H), 3.42 (m, 1H) MS (70 eV): m/z (%) = 146 (M+,
16.2%), 118 (100.0%), 103 (12.4%), 90.95 (47.1%), 77 (31.7%), 62.9 (24.4%) and
51 (12.3%). CHNS = Anal. Calcd for C7H6N4: C, 57.53; H, 4.14; N, 38.34. Found C,
57.76; H, 4.74; N, 38.77.
11. Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles; Thieme: NewYork,
1995. 212.
12. Hansch, C.; Leo, L.; QASR Exploring Fundamentals and Applications in Chemistry
and Biology; American Chemical Society: Washington DC, 1995. Chapter 13.