Tetrahedron
4
135, 1232-1235; (d) Alix, A.; Lalli, C.; Retailleau P.;
Masson, G. R. J. Am. Chem. Soc. 2012, 134, 10389-
10392; (e) Zhou, L.; Tay, D. W.; Chen, J.; Leung, G. Y.
C.; Yeung, Y.-Y. Chem. Commun. 2013, 49, 4412-4414.
4. Examples of asymmetric cycloetherifications: (a) Tan,
C. K.; Yu, W. Z.; Yeung, Y. Chirality 2014, 26, 328-343;
(b) Zeng, X.; Miao, C.; Wang, S.; Xia, C.; Sun, W.
Chem. Commun. 2013, 49, 2418-2420; (c) Hennecke,
U.; Müller, C. H.; Fröhlich, R. Org. Lett. 2011, 13, 860-
863; (d) Denmark, S. E.; Burk, M. T. Org. Lett. 2012,
14, 256-259; (e) Huang, D.; Wang, H.; Xue, F.; Guan,
H.; Li, L.; Peng, X.; Shi, Y. Org. Lett. 2011, 13, 6350-
6353.
Scheme 2. Organocatalyzed iodolactonization reaction with 4-
phenylhexa-4,5-dienoic acid (11).
To summarize, we have investigated the enantioselective
organocatalyzed iodolactonization reaction of aryl-substituted δ-
unsaturated allenoic acids 9a-i using eight different squaramides.
Only low to modest enantiomeric excess of products 10a-i were
observed, with up to 76% ee in the best case. Unfortunately,
these synthetically useful products were obtained in low yields
due to the low conversions at -78 °C of all substrates
investigated, except the para-methoxy substituted substrate 9b.16
Efforts towards improving both the enantioselectivity and the
chemical yields are ongoing. Since chiral squaramides are easily
available over a few steps, their application in enantioselective
protocols will most likely continue to rise.13 Along with prior
demonstrations of highly enantioselective halocyclization
reactions,11,12 we hope that the initial results reported herein will
stimulate further developments of organocatalyzed reactions for
the preparation of synthetically useful vinylic iodolactones.
Chiral squaramides have many advantages, such as their
insensitivity to moisture and oxygen, low toxicity and ease of
preparation from low cost starting materials.13 Only recently have
squaramide derived organocatalysts been employed for the
synthesis of non-12 and halogenated natural products.17
Considering their large number,17 enantioselective and catalytic
processes using these types of catalysts will most likely be used
for their preparation.
5. (a) Zhang, W.; Zheng, S.; Liu, N.; Werness, J. B.; Guzei
I. A.; Tang, W. J. Am. Chem. Soc. 2010, 132, 3664-
3665; (b) Wilking, M.; Mueck-Lichtenfeld, C.;
Daniliuc, C. G.; Hennecke, U. J. Am. Chem. Soc. 2013,
135, 8133-8136; (c) Rauniyar, V.; Lackner, A. D.;
Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681-
1684.
6. (a) Zhang, W.; Zheng, S.; Liu, N.; Werness, J. B.;
Guzei, I. A.; Tang, W. J. Am. Chem. Soc. 2010, 132,
3664-3665; (b) Zhang, W.; Hu, X.; Xu, H.; Tang, W. J.
Am. Chem. Soc. 2009, 131, 3832-3833.
7. (a) Jiang, X.; Fu, C.; Ma, S. Chem. Eur. J. 2008, 14,
9656-9664; (b) Lü, B. ; Jiang, X.; Fu, C.; Ma, S. J. Org.
Chem. 2009, 74, 438-441; (c) Zhang, X.; Fu, C.; Yu, Y.;
Ma, S. Chem. Eur. J. 2012, 18, 13501-13509.
8. Miles, D. H.; Marcos, V.; Toste, F. D. Chem. Sci. 2013,
4, 3427-3431.
9. Wilking, M.; Daniliuc, C. G.; Hennecke, U. Synlett
2014, 25, 1701-1704.
10. Murai, K.; Shimizu, N.; Fujioka, H. Chem. Commun.
2014, 50, 12530-12533.
11. Tungen, J. E.; Nolsøe, J. M. J.; Hansen, T. V. Org. Lett.
2012, 14, 5884-5887.
Acknowledgments
12. Aursnes, M.; Tungen, J. E.; Hansen, T. V. J. Org. Chem.
2016, 81,8287–8295 .
13. (a) Han, X.; Zhou, H.-B.; Dong, C. Chem. Rec. 2016,
16, 897-906; (b) Storer, R. I.; Aciro, C.; Jones, L. H.
Chem. Soc. Rev. 2011, 40, 2330-2346;
Helpful discussions with Associate Professor Anders Vik are
appreciated. The Norwegian Research Council (FRIPRO-
FRINATEK 230470) is gratefully acknowledged for scholarships to
R. K. and M. A., while we thank the School of Pharmacy, University
of Oslo, for a scholarship to J. E. T.
14. (a) Primdahl, K. G.; Stenstrøm, Y.; Hansen, T. V.; Vik,
A. Chem. Phys. Lipids 2016, 196, 1-4; (b) Filippova, L.;
Aarum, I.; Ringdal, M.; Dahl, M. K.; Hansen, T. V.;
Stenstrøm, Y. Org. Biomol. Chem. 2015, 13, 4680-4685;
(c) Jacobsen, M. G.; Vik, A.; Hansen, T. V. Tetrahedron
Lett. 2014, 55, 2842-2844; (d) Jacobsen, M. G.; Vik, A.;
Hansen T. V. Tetrahedron Lett. 2012, 53, 5837-5839; (e)
Vik, A.; Hansen, T. V. Tetrahedron Lett. 2011, 52, 1060-
1062; (f) Vik, A.; Hansen, T. V.; Holmeide, A. K.;
Skattebøl, L. Tetrahedron Lett. 2010, 51, 2852-2854;
(g) Hansen, T. V.; Skattebøl. L. Tetrahedron Lett. 2004,
45, 2809-2811.
References and notes
1. (a) Laya, M. S.; Banerjee, A. K.; Cabrera, E. V. Curr.
Org. Chem. 2009, 13, 720-730; (b) Snyder, S. A.;
Treitler, D. S.; Brucks, A. P. Aldrichimica Acta 2011,
44, 27-40.
2. (a) Hennecke, U. Chem. – Asian J. 2012, 7, 456-465;
(b) Nolsøe, J. M.; Hansen, T. V. Eur. J. Org. Chem.
2014, 3051-3065; (c) Veitch, G. E.; Jacobsen, E. N.
Angew. Chem. Int. Ed. 2010, 49, 7332-7335; (d) Chen,
G.; Ma, S. Angew. Chem., Int. Ed. 2010, 49, 8306-8308;
(e) Tan, C. K.; Zhou, L.; Yeung, Y.-Y. Synlett 2011,
1335-1339; (f) Filippova, L.; Stenstrøm, Y.; Hansen, T.
V. Tetrahedron Lett. 2014, 55, 419-422; (g) Arai, T.;
Kojima, T.; Watanbe, O.; Itoh, T.; Kanoh, H.
ChemCatChem. 2015, 7, 3234-3428; (h) Denmark, S.
E.; Kuester, W. E.; Burk, M. T. Angew. Chem., Int. Ed.
2012, 51, 10938-10953; (i) Dobish, M. C.; Johnston, J.
N. J. Am. Chem. Soc. 2012, 134, 6068-6071.
15. Gilmore, K.; Alabugin, I. V. Chem. Rev. 2011, 111,
6513-6556.
1
16. Conversion was determined to be < 60% by H NMR-
analyses; full conversion was observed for 9b.
17. (a) Chung, W.; Vanderwal, C. D. Angew. Chem., Int. Ed.
2016, 55, 4396-4434; (b) Martin, T.; Padron, J. I.;
Martin, V. S. Synlett 2013, 12-32.
1
Copies of H and 13C NMR spectra and of chromatograms of
3. Examples of asymmetric haloaminocyclizations: (a)
Bovino, M. T.; Chemler, S. R. Angew. Chem., Int. Ed.
2012, 51, 3923-3927; (b) Chen, J.; Zhou, L.; Yeung, Y.-
Y. Org. Biomol. Chem. 2012, 10, 3808-3811; (c) Chen,
F.; Tan C. K.; Yeung, Y.-Y. J. Am. Chem. Soc. 2013,
HPLC analyses, as well as experimental procedures, are available
at [to be inserted by editorial office].