Page 5 of 7
Journal of the American Chemical Society
dihydropyridines. Angew. Chem., Int. Ed. 2017, 56, 15039–15043. (b) Goti,
Research Foundation, and TOBE MAKI scholarship Foundation
(to Y.S.).
G.; Bieszczad, B.; Vega-Penaloza, A.; Melchiorre, P., Stereocontrolled Syn-
thesis of 1,4-Dicarbonyl Compounds by Photochemical Organocatalytic
Acyl Radical Addition to Enals. Angew. Chem., Int. Ed.. 2019, 58, 1213–
1217. (c) van Leeuwen, T.; Buzzetti, L.; Perego, L. A.; Melchiorre, P., A
Redox-Active Nickel Complex that Acts as an Electron Mediator in Photo-
chemical Giese Reactions. Angew. Chem., Int. Ed. 2019, 58, 4953–4957. (d)
Zhang, K.; Lu, L.-Q.; Jia, Y.; Wang, Y.; Lu, F.-D.; Pan, F.; Xiao, W.-J., Ex-
ploration of a Chiral Cobalt Catalyst for Visible-Light-Induced Enantiose-
lective Radical Conjugate Addition. Angew. Chem., Int. Ed. 2019, 58,
13375–13379. (e) Gandolfo, E.; Tang, X.; Raha Roy, S.; Melchiorre, P., Pho-
tochemical Asymmetric Nickel-Catalyzed Acyl Cross-Coupling. Angew.
Chem., Int. Ed. 2019, 58, 16854–16858.
1
2
3
4
5
6
7
8
REFERENCES
(1) (a) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C., Photoredox Catalysis in
Organic Chemistry. J. Org. Chem. 2016, 81, 6898–6926. (b) Matsui, J. K.;
Lang, S. B.; Heitz, D. R.; Molander, G. A., Photoredox-Mediated Routes to
Radicals: The Value of Catalytic Radical Generation in Synthetic Methods
Development. ACS Catal. 2017, 7, 2563–2575. (c) Milligan, J. A.; Phelan, J.
P.; Badir, S. O.; Molander, G. A., Alkyl Carbon-Carbon Bond Formation by
Nickel/Photoredox Cross-Coupling. Angew. Chem., Int. Ed. 2019, 58, 6152–
6163.
(2) (a) Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda, M., Photosensi-
tized decarboxylative Michael addition through N-(acyloxy)phthalimides via
an electron-transfer mechanism. J. Am. Chem. Soc. 1991, 113, 9401–9402.
(b) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan,
D. W., Dual catalysis. Merging photoredox with nickel catalysis: coupling of
alpha-carboxyl sp3-carbons with aryl halides. Science 2014, 345, 437–440.
(3) (a) Lackner, G. L.; Quasdorf, K. W.; Overman, L. E., Direct Construction of
Quaternary Carbons from Tertiary Alcohols via Photoredox-Catalyzed Frag-
mentation of tert-Alkyl N-Phthalimidoyl Oxalates. J. Am. Chem. Soc. 2013,
135, 15342–15345. (b) Nawrat, C. C.; Jamison, C. R.; Slutskyy, Y.; MacMil-
lan, D. W. C.; Overman, L. E., Oxalates as Activating Groups for Alcohols
in Visible Light Photoredox Catalysis: Formation of Quaternary Centers by
Redox-Neutral Fragment Coupling. J. Am. Chem. Soc. 2015, 137, 11270–
11273.
9
(9) Schuster, G. B., Photochemistry of organoborates: intra-ion pair electron
transfer to cyanines. Pure Appl. Chem. 1990, 62, 1565–1572.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) (a) Sumida, Y.; Harada, R.; Kato-Sumida, T.; Johmoto, K.; Uekusa, H.; Ho-
soya, T., Boron-Selective Biaryl Coupling Approach to Versatile Dibenzox-
aborins and Application to Concise Synthesis of Defucogilvocarcin M. Org.
Lett. 2014, 16, 6240–6243. (b) Numano, M.; Nagami, N.; Nakatsuka, S.;
Katayama, T.; Nakajima, K.; Tatsumi, S.; Yasuda, N.; Hatakeyama, T., Syn-
thesis of Boronate-Based Benzo[fg]tetracene and Benzo[hi]hexacene via De-
methylative Direct Borylation. Chem. Eur. J. 2016, 22, 11574–11577.
(11) The stability of tert-butylborate 2a was examined by monitoring the de-
crease of the complex by 1H NMR (for details, see Supporting Information).
(12) Rehm, D.; Weller, A., Kinetics of Fluorescence Quenching by Electron and
H-Atom Transfer. Isr. J. Chem. 1970, 8, 259–271.
(13) In all the case depicted in Figures 2C–G, no reaction occurred without
photo-irradiation.
(4) (a) Yasu, Y.; Koike, T.; Akita, M., Visible Light-Induced Selective
Generation of Radicals from Organoborates by Photoredox Catalysis. Adv.
Synth. Catal. 2012, 354, 3414–3420. (b) Tellis, J. C.; Primer, D. N.;
Molander, G. A., Single-electron transmetalation in organoboron cross-
coupling by photoredox/nickel dual catalysis. Science 2014, 345, 433–436
(c) Duret, G.; Quinlan, R.; Bisseret, P.; Blanchard, N., Boron chemistry in a
new light. Chem. Sci. 2015, 6, 5366–5382. (d) Primer, D. N.; Molander, G.
A., Enabling the Cross-Coupling of Tertiary Organoboron Nucleophiles
through Radical-Mediated Alkyl Transfer. J. Am. Chem. Soc. 2017, 139,
9847–9850. (e) Campbell, M. W.; Compton, J. S.; Kelly, C. B.; Molander,
G. A., Three-Component Olefin Dicarbofunctionalization Enabled by
Nickel/Photoredox Dual Catalysis. J. Am. Chem. Soc. 2019, 141, 20069–
20078. (f) Yuan, M.; Song, Z.; Badir, S. O.; Molander, G. A.; Gutierrez, O.,
On the Nature of C(sp3)–C(sp2) Bond Formation in Nickel-Catalyzed
Tertiary Radical Cross-Couplings: A Case Study of Ni/Photoredox Catalytic
Cross-Coupling of Alkyl Radicals and Aryl Halides. J. Am. Chem. Soc. 2020,
142, 7225–7234.
(5) (a) Corce, V.; Chamoreau, L. M.; Derat, E.; Goddard, J. P.; Ollivier, C.; Fen-
sterbank, L., Silicates as Latent Alkyl Radical Precursors: Visible-Light Pho-
tocatalytic Oxidation of Hypervalent Bis-Catecholato Silicon Compounds.
Angew. Chem., Int. Ed. 2015, 54, 11414–11418. (b) Jouffroy, M.; Primer, D.
N.; Molander, G. A., Base-Free Photoredox/Nickel Dual-Catalytic Cross-
Coupling of Ammonium Alkylsilicates. J. Am. Chem. Soc. 2016, 138, 475–
478. (c) Phelan, J. P.; Lang, S. B.; Sim, J.; Berritt, S.; Peat, A. J.; Billings,
K.; Fan, L.; Molander, G. A., Open-Air Alkylation Reactions in Photoredox-
Catalyzed DNA-Encoded Library Synthesis. J. Am. Chem. Soc. 2019, 141,
3723–3732. (d) Cartier, A.; Levernier, E.; Corcé, V.; Fukuyama, T.;
Dhimane, A.-L.; Ollivier, C.; Ryu, I.; Fensterbank, L., Carbonylation of Al-
kyl Radicals Derived from Organosilicates through Visible-Light Photore-
dox Catalysis. Angew. Chem., Int. Ed. 2019, 58, 1789–1793.
(6) (a) Basch, C. H.; Liao, J.; Xu, J.; Piane, J. J.; Watson, M. P., Harnessing
Alkyl Amines as Electrophiles for Nickel-Catalyzed Cross Couplings via C–
N Bond Activation. J. Am. Chem. Soc. 2017, 139, 5313–5316. (b) Klauck, F.
J. R.; James, M. J.; Glorius, F., Deaminative Strategy for the Visible-Light-
Mediated Generation of Alkyl Radicals. Angew. Chem., Int. Ed. 2017, 56,
12336–12339. (c) Klauck, F. J. R.; Yoon, H.; James, M. J.; Lautens, M.; Glo-
rius, F., Visible-Light-Mediated Deaminative Three-Component Dicarbo-
functionalization of Styrenes with Benzylic Radicals. ACS Catal. 2019, 9,
236–241. (d) Wu, J.; Grant, P. S.; Li, X.; Noble, A.; Aggarwal, V. K., Cata-
lyst-Free Deaminative Functionalizations of Primary Amines by Photoin-
duced Single-Electron Transfer. Angew. Chem., Int. Ed. 2019, 58, 5697–
5701.
(7) (a) Nakajima, K.; Nojima, S.; Sakata, K.; Nishibayashi, Y., Visible-Light-
Mediated Aromatic Substitution Reactions of Cyanoarenes with 4-Alkyl-1,4-
dihydropyridines through Double Carbon–Carbon Bond Cleavage. Chem-
CatChem 2016, 8, 1028–1032. (b) Gutiérrez-Bonet, Á.; Tellis, J. C.; Matsui,
J. K.; Vara, B. A.; Molander, G. A., 1,4-Dihydropyridines as Alkyl Radical
Precursors: Introducing the Aldehyde Feedstock to Nickel/Photoredox Dual
Catalysis. ACS Catalysis 2016, 6, 8004-8008. (c) Zhang, H. H.; Zhao, J. J.;
Yu, S., Enantioselective Allylic Alkylation with 4-Alkyl-1,4-dihydro-pyri-
dines Enabled by Photoredox/Palladium Cocatalysis. J. Am. Chem. Soc. 2018,
140, 16914-16919.
(14) (a) Bernardi, R.; Caronna, T.; Morrocchi, S.; Traldi, P., Photoinitiated sub-
stitution reactions of 2 and 4-pyridinecarbonitrile with cyclopentene. Tetra-
hedron Lett. 1981, 22, 155–156. (b) McNally, A.; Prier, C. K.; MacMillan,
D. W. C., Discovery of an α-Amino C–H Arylation Reaction Using the Strat-
egy of Accelerated Serendipity. Science 2011, 334, 1114–1117. (c) Hoshi-
kawa, T.; Inoue, M., Photoinduced direct 4-pyridination of C(sp3)–H Bonds.
Chem. Sci. 2013, 4, 3118–3123. (d) Lima, F.; Kabeshov, M. A.; Tran, D. N.;
Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S. V.,
Visible Light Activation of Boronic Esters Enables Efficient Photoredox
C(sp2)–C(sp3) Cross-Couplings in Flow. Angew. Chem., Int. Ed. 2016, 55,
14085–14089.
(15) No desired product 5a was obtained when tert-butyllithium or tert-butyl
Grignard reagent was treated with 4 under a catalytic amount of boracene 1
and blue LED irradiation.
(16) Andrieux, C. P.; Gelis, L.; Medebielle, M.; Pinson, J.; Saveant, J. M., Outer-
sphere dissociative electron transfer to organic molecules: a source of radi-
cals or carbanions? Direct and indirect electrochemistry of perfluoroalkyl
bromides and iodides. J. Am. Chem. Soc. 1990, 112, 3509–3520.
(17) The radical–radical coupling might be due to the persistent radical effect.
See: Leifert, D.; Studer, A. The Persistent Radical Effect in Organic Synthe-
sis. Angew. Chem., Int. Ed., 2020, 59, 74–108. See Supporting Information
for details.
(18) Giese, B., Formation of CC Bonds by Addition of Free Radicals to Alkenes.
Angew. Chem., Int. Ed. 1983, 22, 753–764.
(19) Neither mechanism can be ruled out, but the simple photo-irradiation mech-
anism may be more plausible. See Supporting Information in details.
(20) Lohre, C.; Dröge, T.; Wang, C.; Glorius, F., Nickel-Catalyzed Cross-Cou-
pling of Aryl Bromides with Tertiary Grignard Reagents Utilizing Donor-
Functionalized N-Heterocyclic Carbenes (NHCs). Chem. Eur. J. 2011, 17,
6052–6055.
(21) Hill, R. R.; Rychnovsky, S. D., Generation, Stability, and Utility of Lithium
4,4'-Di-tert-butylbiphenylide (LiDBB). J. Org. Chem. 2016, 81, 10707–
10714.
(22) (a) Haydl, A. M.; Hartwig, J. F., Palladium-Catalyzed Methylation of Aryl,
Heteroaryl, and Vinyl Boronate Esters. Org. Lett. 2019, 21, 1337–1341. (b)
Kariofillis, S. K.; Shields, B. J.; Tekle-Smith, M. A.; Zacuto, M. J.; Doyle,
A. G., Nickel/Photoredox-Catalyzed Methylation of (Hetero)aryl Chlorides
Using Trimethyl Orthoformate as a Methyl Radical Source. J. Am. Chem.
Soc. 2020, 142, 7683–7689.
(23) Very recently, Molander, Gutierrez, and co-workers reported that
Ni(TMHD)2-catalyzed cross-coupling of tert-butyl radical with aryl halide
proceeds via an outer-sphere reductive elimination step, see ref 4f.
(24) Bartlett, P. N.; Eastwick-Field, V., A reinvestigation of the electrochemistry
of [Ni(II)(bpy)3(ClO)4)2] in acetonitrile using rotating disc and rotating ring-
disc electrodes. Electrochimica Acta 1993, 38, 2515–2523.
(25) Durandetti, M.; Périchon, J.; Nédélec, J.-Y., Nickel-catalysed electrochem-
ical coupling of 2- and 3-bromothiophene with alkyl and alkenyl halides.
Tetrahedron Lett. 1997, 38, 8683–8686.
(26) (a) García-Domínguez, A.; Li, Z.; Nevado, C., Nickel-Catalyzed Reductive
Dicarbofunctionalization of Alkenes. J. Am. Chem. Soc. 2017, 139, 6835–
6838. (b) Garcia-Dominguez, A.; Mondal, R.; Nevado, C., Dual Photore-
dox/Nickel-Catalyzed Three-Component Carbofunctionalization of Alkenes.
Angew. Chem., Int. Ed. 2019, 58, 12286–12290. (c) Shu, W.; García-
(8) (a) Buzzetti, L.; Prieto, A.; Roy, S. R.; Melchiorre, P., Radical-Based C-C
Bond-Forming Processes Enabled by the Photoexcitation of 4-Alkyl-1,4-
ACS Paragon Plus Environment