LETTER
Asymmetric Henry Reaction
885
Shaw, S. Org. Lett. 2012, 14, 6270. (u) Angulo, B.; García,
I. J.; Herrerías, I. C.; Mayoral, A. J.; Miñana, C. A. J. Org.
Chem. 2012, 77, 5525.
The absolute configuration of each product was deter-
mined to be S.20 The observed stereochemistry was con-
sistent with the postulated transition-state model depicted
in Scheme 1, in which the re face of the aldehyde was
preferentially attacked by the nitronate ion.21
(5) Chinchilla, R.; Nájera, C.; Sánchez-Agulló, P. Tetrahedron:
Asymmetry 1994, 5, 1393.
(6) Ooi, T.; Doda, K.; Maruoka, K. J. Am. Chem. Soc. 2003,
125, 2054.
(7) (a) Sohtome, Y.; Hashimoto, Y.; Nawasaga, K. Adv. Synth.
Catal. 2005, 347, 1643. (b) Sohtome, Y.; Takemura, N.;
Takada, K.; Takagi, R.; Iguchi, T.; Nagasawa, K. Chem.
Asian J. 2007, 2, 1150.
(8) Marcelli, T.; van der Haas, R. N. S.; van Maarseveen, J. H.;
Hiemstra, H. Angew. Chem. Int. Ed. 2006, 45, 929.
(9) Liu, X.; Jiang, J.; Shi, M. Tetrahedron: Asymmetry 2007, 18,
2773.
In conclusion, we have demonstrated that biaryl-based
bis(thiourea) 1 is an efficient chiral organocatalyst for the
asymmetric Henry reaction. Further studies to expand the
substrate scope and elucidate the reaction mechanism are
under way in our laboratory.
Acknowledgment
(10) Ube, H.; Terada, M. Bioorg. Med. Chem. Lett. 2009, 19,
3895.
(11) Uraguchi, D.; Sakaki, S.; Ooi, T. J. Am. Chem. Soc. 2007,
129, 12392.
(12) Tang, Z.; Iida, H.; Hu, H.-Y.; Yashima, E. ACS Macro Lett.
2012, 1, 261.
(13) Lang, K.; Park, J.; Hong, S. Angew. Chem. Int. Ed. 2012, 51,
1620.
We would like to thank Dr. Hiroshi Furuno, Institute for Materials
Chemistry and Engineering (IMCE), Kyushu University, for the
measurement of HRMS spectra and X-ray crystal structure analysis.
We would also like to thank Ms. Keiko Ideta, Ms. Yasuko Tanaka,
and Mr. Taisuke Matsumoto (Evaluation Center of Materials Pro-
perties and Function, IMCE, Kyushu University) for the measure-
ment of NMR and HRMS spectra and X-ray analysis. This work
was partially supported by JSPS KAKENHI Grant Number
24650532 and by the Cooperative Research Program of the ‘Net-
work Joint Research Center for Materials and Devices (IMCE,
Kyushu University)’.
(14) Nakayama, Y.; Gotanda, T.; Ito, K. Tetrahedron Lett. 2011,
52, 6234.
(15) (a) Leutenegger, U.; Umbricht, G.; Fahrni, C.; von Matt, P.;
Pfaltz, A. Tetrahedron 1992, 48, 2143. (b) For a review, see:
Trost, B. M.; van Vranken, D. L. Chem. Rev. 1996, 96, 395.
(16) Use of the combination of BSTFA and KOAc as a base for
palladium-catalyzed asymmetric allylic substitution: Ito, K.;
Kashiwagi, R.; Hayashi, S.; Uchida, T.; Katsuki, T. Synlett
2001, 284.
(17) Typical Experimental Procedure is Exemplified by
Henry Reaction of 4-Nitrobenzaldehyde with
Nitromethane
References and Notes
(1) Present address: Institute for Materials Chemistry and
Engineering (IMCE), Kyushu University, Hakozaki,
Higashi-ku, Fukuoka 812-8581, Japan.
(2) For reviews on the catalytic asymmetric Henry reaction, see:
(a) Boura, J.; Gogoi, N.; Saikia, P. P.; Barua, C. N.
Tetrahedron: Asymmetry 2006, 17, 3315. (b) Palomo, C.;
Oiarbide, M.; Laso, A. Eur. J. Org. Chem. 2007, 2561.
(3) Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am.
Chem. Soc. 1992, 114, 4418.
Catalyst 1 (8.1 mg, 10.0 μmol) was placed in microtube
under nitrogen and to this tube was added BSTFA (5.5 μL,
20.0 μmol) in DMF (100 μL), a catalytic amount of KOAc
(0.4–0.5 mg, 4.1–5.1 μmol), and 4-nitrobenzaldehyde (16.1
mg, 0.1 mmol). After the mixture was cooled to –40 °C,
MeNO2 (55 μL, 1.0 mmol) was added at that temperature.
After being stirred for 23 h at –40 °C, the mixture was
quenched with H2O and extracted with EtOAc. The organic
extract was dried over anhyd MgSO4 and concentrated.
Silica gel chromatography of the residue (hexane–
Et2O = 6:4) gave the desired product (19.3 mg, 91%). The ee
of the product was determined to be 91% by HPLC using
chiral stationary-phase column as described in the footnote
of Table 1.
(4) Some selected examples: (a) Trost, B. M.; Yeh, V. S. C.
Angew. Chem. Int. Ed. 2002, 41, 861. (b) Evans, D. A.;
Seidel, D.; Rueping, M.; Lam, H. W.; Shaw, J. T.; Downey,
C. W. J. Am. Chem. Soc. 2003, 125, 12692. (c) Palomo, C.;
Oiarbide, M.; Laso, A. Angew. Chem. Int. Ed. 2005, 44,
3881. (d) Xiong, Y.; Wang, X.; Huang, X.; Wen, Y.; Feng,
X. Chem. Eur. J. 2007, 13, 829. (e) Ma, K.; You, J. Chem.
Eur. J. 2007, 13, 1863. (f) Bandini, M.; Piccinelli, F.;
Tommasi, S.; Umani-Ronchi, A.; Ventrici, C. Chem.
Commun. 2007, 616. (g) Arai, T.; Takashita, R.; Endo, Y.;
Watanabe, M.; Yanagisawa, A. J. Org. Chem. 2008, 73,
4903. (h) Blay, G.; Domingo, L. R.; Hernández-Olmos, V.;
Pedro, J. R. Chem. Eur. J. 2008, 14, 4725. (i) Nitabaru, T.;
Kumagai, N.; Shibasaki, M. Tetrahedron Lett. 2008, 49,
272. (j) Kowalczyk, R.; Kwiatkowski, K.; Skarzewski, J.;
Jurczak, J. J. Org. Chem. 2009, 74, 753. (k) Arai, T.; Suzuki,
K. Synlett 2009, 3167. (l) Lee, J.-M.; Kim, J.; Shin, Y.;
Yeom, C.-E.; Lee, J. E.; Hyeon, T.; Kim, B. M. Tetrahedron:
Asymmetry 2010, 21, 285. (m) Xin, D.; Ma, Y.; He, F.
Tetrahedron: Asymmetry 2010, 21, 333. (n) Noole, A.;
Lippur, K.; Metsala, A.; Loop, M.; Kanger, T. J. Org. Chem.
2010, 75, 1313. (o) Panov, I.; Drabina, P.; Padělková, Z.;
Šimůnek, P.; Sedlák, M. J. Org. Chem. 2011, 76, 4787.
(p) Didier, D.; Magnier-Bouvier, C.; Schulz, E. Adv. Synth.
Catal. 2011, 353, 1087. (q) Kodama, K.; Sugawara, K.;
Hirose, T. Chem. Eur. J. 2011, 17, 13584. (r) Zhou, Y.;
Dong, J.; Zhang, F.; Gong, Y. J. Org. Chem. 2011, 76, 588.
(s) Cheng, H.-G.; Lu, L.-Q.; Wang, T.; Chen, J.-R.; Xiao,
W.-J. Chem. Commun. 2012, 48, 5596. (t) White, D. J.;
(18) Time-course studies suggested that the retro process is not
involved in the reaction (3 h: 15% yield, 89% ee, 6 h: 35%
yield, 88% ee, 12 h: 47% yield, 88% ee, 24 h: 90% yield,
89% ee). For the retro process in the asymmetric Henry
reaction using organocatalyst, see ref. 7b.
(19) We also examined the reaction of aldehydes and EtNO2, but
the reaction did not proceed.
(20) Absolute configuration of all nitro alcohols were determined
by comparison of elution order of HPLC and specific
rotation with the reported value.4b,g,j,9
(21) (a) At the moment, we have no evidence that the nitronate
anion is generated under the optimized conditions. However,
we believe that the nitronate anion from MeNO2
(pKa = 10.2) is generated, because the imidate anion
generated from BSA or BSTFA and KOAc can deprotonate
dimethyl malonate (pKa = 13). (b) For a review on the use of
BSA in organic synthesis, see: El Gihani, M. T.; Heaney, H.
Synthesis 1998, 357.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 883–885