Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
isomerisation of azobenzene derivatives has been reported in
literature.28 However, such gel-state morphogenesis are not
commonly observed phenomenon.29 It is clear that during the
DOI: 10.1039/C9CC09225K
Chem. Eur. J., 2017, 23, 981-993.
2. I. W. Hamley, Chem. Rev., 2017, 117, 14015-14041.
3. A. Dasgupta, J. H. Mondal and D. Das, RSC Advances, 2013, 3,
9117-9149.
4. X. Du, J. Zhou, J. Shi and B. Xu, Chem. Rev., 2015, 115, 13165-
13307.
5. F. Raza, Y. Zhu, L. Chen, X. You, J. Zhang, A. Khan, M. W. Khan,
M. Hasnat, H. Zafar, J. Wu and L. Ge, Biomater. Sci., 2019, 7,
2023-2036.
6. M. E. Roth-Konforti, M. Comune, M. Halperin-Sternfeld, I.
Grigoriants, D. Shabat and L. Adler-Abramovich, Macromol.
Rapid Commun., 2018, 39, 1800588.
trans-cis isomerisation, the Azo-KC dimer undergoes
a
significant change in molecular arrangement, which is shown in
Scheme 1. Presumably the new arrangement in the S-gel
requires less water to stabilise the aggregated structure. Thus,
the system expels excess water present in the system.
Moreover, when exposed to the disulphide bond breaking
agents, the S-gel did not get dissolved. This observation also
suggests much stronger packing of the molecules in the S-gel
compared to that in H-gel. However, determination of the exact
molecular arrangement in the shrunken state requires further
detailed analyses.
7. D. Zheng, Z. Gao, T. Xu, C. Liang, Y. Shi, L. Wang and Z. Yang,
Nanoscale, 2018, 10, 21459-21465.
We anticipated that light-triggered shrinkage of the H-gel, could
be used to entrap toxic small molecules, including dyes, in the
S-gel structure. Six different model dyes were tested. H-gels (at
MGC) were prepared in 20 M solutions of the model dyes. The
H-gels were then subjected to syneresis by irradiation with UV
light (365 nm) for 2 h. The expelled water was then analysed
using UV-Vis spectroscopy to quantify the concentration of dye
expelled. Importantly, the expelled water was found to be free
of dye in all cases. Fig. 4A-B show the results for methyl orange
(MO) while the results of other dyes are reported in the ESI (Fig.
S9-10). Keeping the gelator concentration fixed at MGC,
different initial concentrations of the dyes were then evaluated.
For MO, the syneresis process could remove the dye completely
at or below 120 M initial dye concentration as analysed by UV-
Visible spectra (Fig. 4B) and analytical HPLC (Fig. S10). Above
this concentration, a small amount of MO was found in the
expelled water. For other dyes, the results were similar and are
shown in Fig. 4C.
In summary, we have presented a small peptide based hydrogel,
which displayed insolubility in water as well as buffers of
different pH (pH 1-13). The hydrogel was found to be thixotropic
in nature and exhibited efficient syneresis upon irradiation with
UV light. The syneresis is stimulated through light-induced
trans-cis isomerisation of the gelator molecule, which
rearranged within the gelled state and expel the excess
unwanted water. The syneresis process was successfully utilised
to efficiently remove model dyes from water.
8. R. Zou, Q. Wang, J. Wu, J. Wu, C. Schmuck and H. Tian, Chem.
Soc. Rev., 2015, 44, 5200-5219.
9. N. Singha, A. Srivastava, B. Pramanik, S. Ahmed, P. Dowari, S.
Chowdhuri, B. K. Das, A. Debnath and D. Das, Chem. Sci., 2019,
10, 5920-5928.
10. R. Xing, S. Li, N. Zhang, G. Shen, H. Möhwald and X. Yan,
Biomacromolecules, 2017, 18, 3514-3523.
11. A. M. Jonker, D. W. P. M. Löwik and J. C. M. van Hest, Chem.
Mater., 2012, 24, 759-773.
12. E. R. Draper, T. O. McDonald and D. J. Adams, Chem. Commun.,
2015, 51, 6595-6597.
13. D. E. Clarke, C. D. J. Parmenter and O. A. Scherman, Angew.
Chem. Int. Ed., 2018, 57, 7709-7713.
14. M. J. Pearse and A. G. Mackinlay, J. Dairy Sci., 1989, 72, 1401-
1407.
15. S. Basak, N. Nandi, S. Paul, I. W. Hamley and A. Banerjee, Chem.
Commun., 2017, 53, 5910-5913.
16. M. P. Conte, N. Singh, I. R. Sasselli, B. Escuder and R. V. Ulijn,
Chem. Commun., 2016, 52, 13889-13892.
17. F. Xie, L. Qin and M. Liu, Chem. Commun., 2016, 52, 930-933.
18. L. Qin, P. Duan, F. Xie, L. Zhang and M. Liu, Chem. Commun.,
2013, 49, 10823-10825.
19. S.-L. Zhou, S. Matsumoto, H.-D. Tian, H. Yamane, A. Ojida, S.
Kiyonaka and I. Hamachi, Chem. Eur. J., 2005, 11, 1130-1136.
20. A. M. Castilla, M. Wallace, L. L. E. Mears, E. R. Draper, J. Doutch,
S. Rogers and D. J. Adams, Soft Matter, 2016, 12, 7848-7854.
21. N. Singha, B. K. Das, B. Pramanik, S. Das and D. Das, Chem. Sci.,
2019, 10, 10035-10039.
22. C. Yan and D. J. Pochan, Chem. Soc. Rev., 2010, 39, 3528-3540.
23. B. Pramanik, S. Ahmed, N. Singha, B. K. Das, P. Dowari and D.
Das, Langmuir, 2019, 35, 478-488.
Conflicts of interest
There are no conflicts to declare.
24. N. Singha, S. Neogi, B. Pramanik, S. Das, A. Dasgupta, R. Ghosh
and D. Das, ACS Appl. Polym. Mater., 2019, 1, 2267-2272.
25. A. Banerjee, K. Gayen, K. Basu, N. Nandi, K. S. Das, D. Hermida-
Merino and I. W. Hamley, ChemPlusChem, 2019, 84, 1673–
1680.
26. J. H. Mondal, S. Ahmed, T. Ghosh and D. Das, Soft Matter, 2015,
11, 4912-4920.
Acknowledgements
27. Ľ. Vetráková, V. Ladányi, J. Al Anshori, P. Dvořák, J. Wirz and D.
Heger, Photochem. Photobiol. Sci., 2017, 16, 1749-1756.
28. O. S. Bushuyev, T. C. Corkery, C. J. Barrett and T. Friščić, Chem.
Sci., 2014, 5, 3158-3164.
DD and OAS acknowledge financial support from UKIERI
(DST/INT/UK/P-119/2016 and DST UKIERI 2016-17-011
respectively).
29. Y. Wang, R. M. deꢀKruijff, M. Lovrak, X. Guo, R. Eelkema and J. H.
vanꢀEsch, Angew. Chem. Int. Ed., 2019, 58, 3800-3803.
Notes and references
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins