8
Tetrahedron
ACCEPTED MANUSCRIPT
To a solution of the bis-TES ether 56 (104.0 mg, 1.97 × 10–1
Tetrahedron 2001, 57, 5975−5977. (d) Kubota, T.; Tsuda, M.;
Kobayashi, J. Tetrahedron 2003, 59, 1613−1625.
mmol) in THF (11.1 mL) and H2O (11.1 mL) cooled at 0 °C was
added AcOH (0.55 mL) followed by stirring at the same
temperature for 1 h. The reaction was quenched by saturated
aqueous NaHCO3 (15 mL) and the reaction mixture was
extracted with CH2Cl2 (15 mL × 3). The combined organic layer
was dried over anhydrous Na2SO4, filtered, and concentrated
under reduced pressure. The residue was purified by flash
2. For isolation and structure of amphidinolide C2, see: Kubota, T.;
Sakuma, Y.; Tsuda, M.; Kobayashi, J. Mar. Drugs 2004, 2, 83–87.
3. For isolation and structure of amphidinolide C3, see: Kubota, T.;
Suzuki, A.; Yamada, M.; Baba, S.; Kobayashi, J. Heterocycles
2010, 82, 333–338.
4. For isolation and structure of amphidinolide F, see: Kobayashi, J.;
Tsuda, M.; Ishibashi, M.; Shigemori, H.; Yamasu, T.; Hirota, H.;
Sasaki, T. J. Antibiot. 1991, 44, 1259–1261.
column chromatography on silica gel (17% EtOAc in hexane) to
afford the alcohol 57 (59.0 mg, 73%) as a colorless oil. [α]D
5. For isolation and structure of amphidinolide C4, see: Nuzzo, G.;
Gomes, B. A.; Luongo, E.; Torres, M. C. M.; Santos, E. A.;
Cutignano, A.; Pessoa, O. D. L.; Costa-Lotufo, L. V.; Fontana, A.
J. Nat. Prod. 2016, 79, 1881–1885.
25
–
4.43 (c 1.0, CHCl3); IR (film): 3421 (br), 2955, 2878, 1063, 1012
cm–1; H NMR (400 MHz, CDCl3) δ 6.56 (dd, J=14.4, 5.6 Hz,
1
6. For reviews on amphidinolides, see: (a) Ishibashi, M.; Kobayashi,
J. Heterocycles 1997, 44, 543−572. (b) Chakraborty, T. K.; Das, S.
Curr. Med. Chem. Anti-cancer Agents 2001, 1, 131−49. (c)
Kobayashi, J.; Shimbo, K.; Kubota, T.; Tsuda, M. Pur. App. Chem.
2003, 75, 337−342. (d) Kobayashi, J.; Tsuda, M. Nat. Prod. Rep.
2004, 21, 77−93. (e) Colby, E. A.; Jamison, T. F. Org. Biomol.
Chem. 2005, 3, 2675−2684. (f) Jia, R.; Huang, X.-C.; Guo, Y.-W.
Chin. J. Nat. Med. 2006, 4, 15–24. (g) Kobayashi, J.; Kubota, T. J.
Nat. Prod. 2007, 70, 451−460. (h) Kobayashi, J. J. Antibiot. 2008,
61, 271−284. (i) Fürstner, A. Israel J. Chem. 2011, 51, 329−345.
(j) Lorente, A.; Lamariano-Merketegi, J.; Albericio, F.; Álvarez,
M. Chem. Rev. 2013, 113, 4567−4610.
1H), 6.33 (dd, J=14.4, 1.2 Hz, 1H), 4.16–4.06 (m, 2H), 4.01–3.93
(m, 1H), 3.84–3.72 (m, 2H), 2.75 (br s, 1H, OH), 2.05–1.86 (m,
2H), 1.73–1.65 (m, 3H), 1.60–1.50 (m, 1H), 0.94 (t, J=8.0 Hz,
9H), 0.59 (q, J=8.0 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ
145.5, 81.5, 80.2, 77.9, 77.0, 61.9, 37.4, 32.4, 26.9, 6.9 (×3), 4.9
(×3); HRMS (+CI) calcd for C15H30IO3Si 413.1009 (M+H+),
found 413.0995.
4.13. (2R,5′R,1"R)-{5′-[(3"-Iodo-1"-triethylsilyloxy)allyl]-
tetrahydrofuran-2′-yl}acetaldehyde (58)
7. Amphidinolide U, a 20-membered macrolide possessing the same
side chain as amphidinolide C1, exhibiting significantly reduced
cytotoxicity against murine lymphoma L1210 and human
epidermoid carcinoma KB cell lines (IC50: 12 and 20 µg/mL), see:
Tsuda, M.; Endo, T.; Kobayashi, J. Tetrahedron 1999, 55, 14565–
14570.
8. For Carter’s total synthesis of amphidinolide C1 and F, see: (a)
Mahapatra, S. Carter, R. G. Angew. Chem. Int. Ed. 2012, 51,
7948–7951. (b) Mahapatra, S.; Carter, R. G. J. Am. Chem. Soc.
2013, 135, 10792–10803.
9. For Fürstner’s total synthesis of amphidinolide C1 and F, see: (a)
Valot, G.; Regents, C. S.; O’Malley, D. P.; Godineau, E.;
Takikawa, H.; Fürstner, A. Angew. Chem. Int. Ed. 2013, 52, 9534–
9538. (b) Valot, G.; Malihol, D.; Regents, C. S.; O’Malley, D. P.;
Godineau, E.; Takikawa, H.; Philipps, P.; Fürstner, A.. Chem. Eur.
J. 2015, 21, 2398–2408.
To a suspension of the alcohol 57 (60.7 mg, 1.47 × 10–1
mmol) and solid NaHCO3 (123.5 mg, 1.47 mmol) in dry CH2Cl2
(1 mL) cooled at 0 ºC was added DMP (187.3 mg, 0.44 mmol,
dissolved in 6 mL CH2Cl2) followed by stirring at the same
temperature for 10 min and at room temperature for another 1.5
h. The reaction was quenched at 0 °C by saturated aqueous
NaHCO3 (5 mL) and Na2S2O3 (5 mL) and the reaction mixture
was extracted with CH2Cl2 (5 mL × 3). The combined organic
layer was washed with brine (5 mL) and dried over Na2SO4,
filtered, and concentrated under reduced pressure. The residue
was purified by flash column chromatography over silica gel (6%
Et2O in hexane) to afford the aldehyde 58 (57.3 mg, 95%) as a
25
colorless oil. [α]D –11.1 (c 1.0, CHCl3); IR (film): 2955, 2877,
1725, 1080 cm–1; 1H NMR (400 MHz, CDCl3) δ 9.79 (dd, J=2.4,
1.6 Hz, 1H), 6.57 (dd, J=14.4, 5.6 Hz, 1H), 6.34 (dd, J=14.4, 1.2
Hz, 1H), 4.42–4.30 (m, 1H), 4.13 (ddd, J=5.6, 5.6, 1.2 Hz, 1H),
4.00–3.95 (m, 1H), 2.65 (ABqdd, J=16.4, 7.2, 2.4 Hz, 1H), 2.54
(ABqdd, J=16.0, 5.2, 1.8 Hz, 1H), 2.15–2.07 (m, 1H), 2.00–1.88
(m, 1H), 1.81–1.70 (m, 1H), 1.60–1.50 (m, 1H), 0.97–0.90 (m,
9H), 0.63–0.53 (m, 6H); 13C NMR (100 MHz, CDCl3) δ 201.2,
145.4, 81.6, 77.9, 76.9, 74.7, 49.6, 32.2, 27.0, 6.9 (×3), 4.9 (×3);
HRMS (+CI) calcd for C15H28IO3Si 411.0852 (M+H+), found
411.0856.
10. (a) Tamura, R.; Saegusa, K.; Kakihana, M.; Oda, D. J. Org. Chem.
1988, 53, 2723–2728. (b) Vedejs, E.; Marth, C. F.; Ruggeri, R. J.
Am. Chem. Soc. 1988, 110, 3940–3948. (c) Wang, Y,; Panagabko,
C.; Atkinson, J. Bioorg. Med. Chem. 2010, 18, 777–786.
11. For proposed Stille cross-coupling approaches, see: (a) Shotwell, J.
B.; Roush, W. R. Org. Lett. 2004, 6, 3865–3868. (b) Akwaboah,
D. C.; Wu, D.; Forsyth, C. J. Org. Lett. 2017, 19, 1180–1183.
12. For a proposed dithiane carbanion alkylation approach, see: Clark,
J. S.; Yang, G.; Osnowski, A. P. Org. Lett. 2013, 15, 1460–1463.
13. For seleted examples of formation THF rings via SN2 cyclization,
see: (a) Kalantar, T. H.; Sharpless, K. B. Acta Chem. Scand. 1993,
47, 307–313. (b) Beauchamp, T. J.; Powers, J. P.; Rychnovsky, S.
D. J. Am. Chem. Soc. 1995, 117, 12873–12874. (c) Avedissian,
H.; Sinha, S. C.; Yazbak, A.; Sinha, A.; Neogi, P.; Sinha, S. C.;
Keinan, E. J. Org. Chem. 2000, 65, 6035–6051. (d) Kojima, N.;
Maezaki, N.; Tominaga, H.; Yanai, M.; Urabe, D.; Tanaka, T.
Chem. Eur. J. 2004, 10, 672–680. (e) Adamo, M. F. A.; Pergoli, R.
Org. Lett. 2007, 9, 4443–4446. (f) Rothman J. H. J. Org. Chem.
2009, 74, 925–928. (g) Zou, Y.; Wu, Y. Angew. Chem. Int. Ed.
2012, 51, 4968–4971. (h) Kölmel, D. K.; Barandun, L. J.; Kool, E.
T. Org. Biomol. Chem. 2016, 14, 6406–6412. For a review, see: (i)
Wu, Y. Snylett 2013, 24, 1623–1636.
Acknowledgements
This work is supported in part by a General Research Fund
grant (600913) from the Research Grant Council, The Hong
Kong Special Administrative Region, P. R. China and the
Department of Chemistry, HKUST.
Supplementary data
14. For selected examples of formation THF rings via AD–SN2
cyclization sequence, see: (a) Das, S.; Li, L.-S.; Abraham, S.;
Chen, Z.; Sinha, S. C. J. Org. Chem. 2005, 70, 5922–5931. (b)
Marshall, J. A.; Sabatini, J. J. Org. Lett. 2006, 8, 3557–3560. (c)
Mohapatra, D. K.; Dasari, P.; Rahaman, H.; Pal, R. Tetrahedron
Lett. 2009, 50, 6276–6279. (d) Kanto, M.; Sasaki, M. Org. Lett.
2016, 18, 112–115.
Synthetic procedures for compounds 31–43 of Schemes 4–6
and copies of 1H and 13C NMR spectra for the compounds 31–49,
52, 54–58, and the related compounds are available.
Supplementary data related to this article can be found at
15. For our previous studies on total synthesis of amphidinolide T1–
T4, X, and Y, see: (a) Chen, Y.; Jin, J.; Wu, J.; Dai, W.-M. Synlett
2006, 1177–1180. (b) Jin, J.; Chen, Y.; Li, Y.; Wu, J.; Dai, W.-M.
Org. Lett. 2007, 9, 2585–2588. (c) Dai, W.-M.; Chen, Y.; Jin, J.;
Wu, J.; Lou, J.; He, Q. Synlett 2008, 1737–1741. (d) Luo, J.; Li,
H.; Wu, J.; Xing, X.; Dai, W.-M. Tetrahedron 2009, 65, 6828–
6833. (e) Li, H.; Wu, J.; Luo, J.; Dai, W.-M. Chem. Eur. J. 2010,
16, 11530–11534. (f) Wu, D.; Li, H.; Jin, J.; Wu, J.; Dai, W.-M.
References and notes
1. For isolation and structure of amphidinolide C1, see: (a)
Kobayashi, J.; Ishibashi, M.; Wälchli, M. R.; Nakamura, H.;
Hirata, Y.; Sasaki, T.; Ohizumi, Y. J. Am. Chem. Soc. 1988, 110,
490−494. (b) Kubota, T.; Tsuda, M.; Kobayashi, J. Org. Lett. 2001,
3, 1363−1366. (c) Kubota, T.; Tsuda, M.; Kobayashi, J.