Bioconjugate Chemistry
Article
glass plate under aerobic external conditions. J. Phys. Chem. Lett. 5,
2402−2407.
(17) Yamamoto, Y., Takeda, H., Yui, T., Ueda, Y., Koike, K., Inagaki,
S., and Ishitani, O. (2014) Efficient light harvesting via sequential two-
step energy accumulation using a Ru-Re5 multinuclear complex
incorporated into periodic mesoporous organosilica. Chem. Sci. 5,
639−648.
(18) Vallet-Regi, M., Ramila, A., del Real, R. P., and Perez-Pariente, J.
́ ́
(2001) A new property of MCM-41: Drug Delivery System. Chem.
Mater. 13, 308−311.
(19) Tang, F., Li, L., and Chen, D. (2012) Mesoporous silica
nanoparticles: synthesis biocompatibility and drug delivery. Adv. Mater.
24, 1504−1534.
ACKNOWLEDGMENTS
■
We sincerely thank Professor Teruyuki Kondo (Kyoto
University) for his valuable discussions and supports during
this study. We also thank Professor Tadashi Suzuki (Aoyama
Gakuin University) for valuable discussions about physical−
chemical properties of the compounds. This work is partly
supported by the Innovative Techno-Hub for Integrated
Medical Bioimaging Project of the Special Coordination
Funds for Promoting Science and Technology, and by Grant-
in-Aid for Scientific Research, from the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan.
(20) Mondragon, L., Mas, N., Ferragud, V., de la Torre, C., Agostini,
A., Martinez-Manez, R., Sancenon, F., Amoros, P., Perez-Paya, E., and
Orzaez, M. (2014) Enzyme-responsive intracelular-controlled release
using silica mesoporous nanoparticles capped with ε−poly-L-lysine.
Chem. - Eur. J. 20, 5271−5281.
REFERENCES
■
(1) Halloran, M. C., Sato-Maeda, M., Warren, J. T., Su, F., Jr., Lele,
Z., Krone, P. H., Kuwada, J. Y., and Shoji, W. (2000) Laser-induced
gene expression in specific cells of transgenic zebrafish. Development
127, 1953−1960.
(2) Kamei, Y., Suzuki, M., Watanabe, K., Fujimori, K., Kawasaki, T.,
Deguchi, T., Yoneda, Y., Todo, T., Takagi, S., Funatsu, T., et al. (2009)
Infrared laser-mediated gene induction in targeted single cells in vivo.
Nat. Methods 6, 79−81.
(3) Wang, Y., He, H., Li, S., Liu, D., Lan, B., Hu, M., Cao, Y., and
Wang, C. (2014) All-optical regulation of gene expression in targeted
cells. Sci. Rep. 4, 5346−5351.
(4) Yamazoe, S., Liu, Q., McQuade, L. E., Deiters, A., and Chen, J. K.
(2014) Sequential gene silencing using wavelength-selective caged
morpholino oligonucleotides. Angew. Chem., Int. Ed. 53, 10114−10118.
(5) Miyako, E., Deguchi, T., Nakajima, Y., Yudasaka, M., Hagihara, Y.,
Horie, M., Shichiri, M., Higuchi, Y., Yamashita, F., Hashida, M., et al.
(2012) Photothermic regulation of gene expression triggered by laser-
induced carbon nanohorns. Proc. Natl. Acad. Sci. U. S. A. 109, 7523−
7528.
(6) Miyako, E., Russier, J., Mauro, M., Cebrian, C., Yawo, H.,
Menard-Moyon, C., Hutchison, J. A., Nakajima, Y., Yudasaka, M.,
Iijima, S., et al. (2014) Photofunctional nanomodulators for
bioexcitation. Angew. Chem., Int. Ed. 53, 13121−13125.
(7) Stanley, S. A., Gagner, J. E., Damanpour, S., Yoshida, M., Dordick,
J. S., and Friedman, J. M. (2012) Radio-wave heating of iron oxide
nanoparticles can regulate plasma glucose in mice. Science 336, 604−
608.
(21) Frasconi, M., Liu, Z., Lei, J., Wu, Y., Strekalova, E., Malin, D.,
Ambrogio, M. W., Chen, X., Botros, Y. Y., Cryns, V. L., et al. (2013)
Photoexpulsion of surface-grafted ruthenium complexes and subse-
quent release of cytotoxic cargos to cancer cells from mesoporous
silica nanoparticles. J. Am. Chem. Soc. 135, 11603−11613.
(22) Cheng, S. − H., Lee, C. − H., Yang, C. − S., Tseng, F. − G.,
Mou, C.-Y., and Lo, L. − W. (2009) Mesoporous silica nanoparticles
functionalized with an oxygen-sensing probe for cell photodynamic
therapy: potential cancer theranostics. J. Mater. Chem. 19, 1252−1257.
(23) Ranby, B., Rabek, J. F. (1978) Singlet oxygen reactions with
organic compounds and polymers, John Wiley and Sons Ltd., London.
(24) Moan, J. (1990) On the diffusion length of singlet oxygen in
cells and tissues. J. Photochem. Photobiol., B 6, 343−347.
(25) Wilkinson, F., Helman, W. P., and Ross, A. B. (1995) Rate
constants for the decay and reactions of the lowest electronically.
Excited singlet state of molecular oxygen in solution. J. Phys. Chem. Ref.
Data 24, 663−1021.
(26) Tanaka, K., Miura, T., Umezawa, N., Urano, Y., Kikuchi, K.,
Higuchi, T., and Nagano, T. (2001) Rational design of fluorescein-
based fluorescence probes. Mechanism-based design of a maximum
fluorescence probe for singlet oxygen. J. Am. Chem. Soc. 123, 2530−
2536.
(27) Kim, S., Tachikawa, T., Fujitsuka, M., and Majima, T. (2014)
Far-red fluorescence probe for monitoring singlet oxygen during
photodynamic therapy. J. Am. Chem. Soc. 136, 11707−11715.
(28) Hsin, L. − W., Wang, H. − P., Kao, P. − H., Lee, O., Chen, W.
− R., Chen, H. − W., Guh, J. − H., Chan, Y. − L., His, C. − P., Yang,
M. − S., et al. (2008) Synthesis, DNA binding, and cytotoxity of 1,4-
bis(2-amino-ethylamino)anthraquinone-amino acid conjugates. Bioorg.
Med. Chem. 16, 1006−1014.
(29) Katzhendler, J., Gean, K. − F., Bar-Ad, G., Tashma, Z., Ben-
Shoshan, R., Ringel, I., Bachrach, U., and Ramu, A. (1989) Synthesis of
aminoanthraquinone derivatives and their in vitro evaluation as
potential anti-cancer drugs. Eur. J. Med. Chem. 24, 23−30.
(30) Agbandje, M., Jenkins, T. C., McKenna, R., Reszka, A. P., and
Neidle, S. (1992) Anthracene-9,l0-diones as potential anticancer
agents. Synthesis, DNA-binding, and biological studies on a series of
2,6-disubstituted derivatives. J. Med. Chem. 35, 1418−1429.
(31) Tu, H. − Y., Huang, A. − M., Teng, C. − H., Hour, T. − C.,
Yang, S. − C., Pu, Y. − S., and Lin, C. − N. (2011) Anthraquinone
derivatives induce G2/M cell cycle arrest and apoptosis in NTUB1
cells. Bioorg. Med. Chem. 19, 5670−5678.
(32) Zeng, G. − Z., Fan, J. − T., Xu, J. − J., Li, Y., and Tan, N. − H.
(2013) Apoptosis induction and G2/M arrest of 2-methyl-1,3,6-
trihydroxy-9,10-anthraquinone from Rubia yunnanensis in human
cervical cancer HeLa cells. Pharmazie 68, 293−299.
(33) Srinivas, N., Radha Rani, V., Kulkarni, S. J., and Raghavan, K. V.
(2002) Liquid phase oxidation of anthracene and trans-stilbene over
modified mesoporous (MCM-41) molecular sieves. J. Mol. Catal. A:
Chem. 179, 221−231.
(8) Yazawa, M., Sadaghiani, A. M., Hsueh, B., and Dolmetsch, R. E.
(2009) Induction of protein-protein interactions in live cells using
light. Nat. Biotechnol. 27, 941−945.
(9) Bugaj, L. J., Choksi, A. T., Mesuda, C. K., Kane, R. S., and
Schaffer, D. V. (2013) Optogenetic protein clustering and signaling
activation in mammalian cells. Nat. Methods 10, 249−252.
(10) Piette, J. (1990) Mutagenic and genotoxic properties of singlet
oxygen. J. Photochem. Photobiol., B 4, 335−339.
(11) Davies, M. J. (2003) Singlet oxygen-mediated damage to
proteins and its consequences. Biochem. Biophys. Res. Commun. 305,
761−770.
(12) Cadet, J., Ravanat, J. L., Martinez, G. R., Medeiros, M. H., and
Di Mascio, P. (2006) Singlet oxygen oxidation of isolated and cellular
DNA: product formation and mechanistic insights. Photochem.
Photobiol. 82, 1219.
(13) Klotz, L. O., Kroncke, K. D., and Sies, H. (2003) Singlet oxygen-
induced signaling effects in mammalian cells. Photochem. Photobiol. Sci.
2, 88−94.
(14) Qian, X., Fuku, K., Kuwahara, Y., Kamegawa, T., Mori, K., and
Yamashita, H. (2014) Design and functionalization of photocatalytic
systems within mesoporous silica. ChemSusChem 7, 1528−1536.
(15) Thomas, J. M., and Sankar, G. (2001) The role of synchrotron-
based Studies in the elucidation and design of active sites in titanium−
silica epoxidation catalysts. Acc. Chem. Res. 34, 571−581.
(16) Noji, T., Kondo, M., Jin, T., Yazawa, T., Osuka, H., Higuchi, Y.,
Nango, M., Itoh, S., and Dewa, T. (2014) Light-driven hydrogen
production by hydrogenases and a Ru-complex inside a nanoporous
H
Bioconjugate Chem. XXXX, XXX, XXX−XXX