C. Liu, R. A. Widenhoefer / Tetrahedron Letters 46 (2005) 285–287
287
Cl
O
Cl
4-pentenyl b-dicarbonyl compounds to form substituted
cyclohexanones.
Eu
O
O
O
HCl
Me
Me
Acknowledgements
1
3
III
PtCl2
Ac
PtCl2/EuCl3
Acknowledgement is made to the NSF (CHE-03-04994)
for support of this research. R.W. thanks the Camille
and Henry Dreyfus Foundation and GlaxoSmithKline
for additional unrestricted financial assistance.
EuCl3
O
O
OH
Me
PtCl
Me
HCl
IV
Scheme 2.
Supplementary data
4-Pentenyl b-diketones that possessed gem-dimethyl
groups on the alkenyl chain were particularly effective
substrates for Pt/Eu-catalyzed hydroalkylation, presum-
ably due to the Thorpe–Ingold effect on cycliz-
ation (Table 2, entries 1–6).14 4-Pentenyl b-keto esters
also underwent Pt/Eu-catalyzed hydroalkylation to
form the corresponding 2-carboalkoxycyclohexanones
in moderate to good yield (Table 2, entries 8–11). Substi-
tution of DCl for HCl in the Pt/Eu-catalyzed cyclization
of b-diketone 4 led to isolation of 5-CH2D in 65% yield
as the exclusive deuterated isotopomer (Eq. 3).
Supplementary data associated with this article can be
scopic data for new compounds (4 pages).
References and notes
1. (a) Pei, T.; Widenhoefer, R. A. J. Am. Chem. Soc. 2001,
123, 11290; (b) Pei, T.; Widenhoefer, R. A. Chem.
Commun. 2002, 650; (c) Wang, X.; Pei, T.; Han, X.;
Widenhoefer, R. A. Org. Lett. 2003, 5, 2699.
2. Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2003,
125, 2056.
3. Widenhoefer, R. A. Pure Appl. Chem. 2004, 76, 671.
4. Pei, T.; Wang, X.; Widenhoefer, R. A. J. Am. Chem. Soc.
2003, 125, 648.
5. Fanizzi, F. P.; Intini, F. P.; Maresca, G.; Natile, G. J.
Chem. Soc., Dalton Trans. 1992, 309.
6. (a) Hofmann, K. A.; von Narbutt, J. Ber. 1908, 41,
1625; (b) Chatt, J.; Vallarino, L. M.; Venanzi, L. M. J.
Chem. Soc. 1957, 2496; (c) Palumbo, R.; De Renzi, A.;
Panunzi, A.; Paiaro, G. J. Am. Chem. Soc. 1969, 91,
3874.
7. Wang, X.; Widenhoefer, R. A. Chem. Commun. 2004, 660.
8. Wang, X.; Widenhoefer, R. A. Organometallics 2004, 23,
1649.
9. Liu, C.; Han, X.; Wang, X.; Widenhoefer, R. A. J. Am.
Chem. Soc. 2004, 126, 3700.
10. Qian, H.; Han, X.; Widenhoefer, R. A. J. Am. Chem. Soc.
2004, 126, 9536.
11. (a) Keller, E.; Feringa, B. L. Tetrahedron Lett. 1996, 37,
1879; (b) Bonadies, F.; Lattanzi, A.; Orelli, L. R.; Pesci, S.;
Scretti, A. Tetrahedron Lett. 1993, 34, 7649.
12. Nelson, J. H.; Howells, P. N.; DeLullo, G. C.; Landen, G.
L. J. Org. Chem. 1980, 45, 1246.
13. For a similar approach to the activation of alkenyl b-keto
esters toward hydroalkylation see: Yang, D.; Li, J.-H.;
Gao, Q.; Yan, Y.-L. Org. Lett. 2003, 5, 2869.
14. DeTar, D. F.; Luthra, N. P. J. Am. Chem. Soc. 1980, 102,
4505.
ð3Þ
On the basis of the mechanisms of the palladium2,3 and
platinum-catalyzed9 addition of carbon nucleophiles to
unactivated olefins and the mechanisms of the stoichio-
metric addition of carbon and nitrogen nucleophiles to
platinum olefin complexes,5,6 we propose a mechanism
for the Pt/Eu-catalyzed intramolecular hydroalkylation
of 1 involving outer-sphere attack of a europium enolate
on the platinum-complexed olefin of III to form the
platinum cyclohexylmethyl species IV (Scheme 2). Proto-
nolysis of the Pt–C bond of IV with HCl would release
3 and regenerate the Pt(II) catalyst. Direct protonolysis
of the Pt–C bond of IV is supported by the formation of
5 –CH2D as the exclusive deuterated isotopomer in the
Pt/Eu-catalyzed hydroalkylation of 4 (Eq. 3).
In summary, we have developed an effective Pt/Eu-cata-
lyzed protocol for the intramolecular hydroalkylation of