10.1002/anie.202015462
Angewandte Chemie International Edition
RESEARCH ARTICLE
alcohol of 4-HBC (73% yield),[11] this reagent is highly toxic and
highly restricted by EHS in China. By exploring a few reagents,
we found that TEMPO oxidation can provide excellent conversion
to produce 4-HBC aldehyde with 95% yield (Scheme 1).
Furthermore, through minor optimization of the second reaction
condition,[10] PG can be efficiently produced (90% yield) through
the copper-mediated catalytic radical oxygenation of 4-HBC
aldehyde (Scheme 1). Finally, to demonstrate its practical utility,
we scaled up the reaction to a preparative level. Based on these
conditions, 80.5 g PG (84.6% yield) was obtained from 100 g 4-
HBC. By accounting for the yield of phytosterols degradation, the
total yield of phytosterols-based PG can be up to 78.7%, which is
much more efficient than the diosgenin degradation route (50%
yield over 8 steps,[5,6] Figure S1). Therefore, this process is both
more economical and sustainable than the diosgenin degradation
route for industrial production of PG.
[6]
[7]
R. K. Mackie, D. M. Smith, R. A. Aitken, Guidebook to organic synthesis,
Longman, Harlow, 1982.
E. Y. Bragin, V. Y. Shtratnikova, D. V. Dovbnya, M. I. Schelkunov, Y. A.
Pekov, S. G. Malakho, O. V. Egorova, T. V. Ivashina, S. L. Sokolov, V.
V. Ashapkin, M. V. Donova, J. Steroid Biochem. Mol. Biol. 2013, 138, 41-
53.
[8]
[9]
C. Duport, R. Spagnoli, E. Degryse, D. Pompon, Nat. Biotechnol. 1998,
16, 186-189.
F. W. Heyl, M. E. Herr, J. Am. Chem. Soc. 1950, 72, 2617-2619.
[10] V. Van Rheenen, Tetrahedron Lett. 1969, 10, 985-988.
[11] J. J. Poza, R. Fernández, F. Reyes, J. Rodríguez, C. Jiménez, J. Org.
Chem. 2008, 73, 7978-7984.
[12] L.-Q. Xu, Y.-J. Liu, K. Yao, H.-H. Liu, X.-Y. Tao, F.-Q. Wang, D.-Z. Wei,
Sci. Rep. 2016, 6, 21928.
[13] W.-J. Sun, L. Wang, H.-H. Liu, Y.-J. Liu, Y.-H. Ren, F.-Q. Wang, D.-Z.
Wei, Metab. Eng. 2019, 56, 97-110.
[14] L.-B. Xiong, H.-H. Liu, L.-Q. Xu, W.-J. Sun, F.-Q. Wang, D.-Z. Wei,
Microb. Cell Fact. 2017, 16, 89.
[15] R. Van der Geize, K. Yam, T. Heuser, M. H. Wilbrink, H. Hara, M. C.
Anderton, E. Sim, L. Dijkhuizen, J. E. Davies, W. W. Mohn, L. D. Eltis,
Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 1947-1952.
[16] K. Yao, F.-Q. Wang, H.-C. Zhang, D.-Z. Wei, Metab. Eng. 2013, 15, 75-
87.
Conclusion
In summary, we have deciphered the biosynthetic mechanisms
of 4-HBC in the phytosterols biodegradation pathway of M.
neoaurum CCTCC AB2019054. 4-HBC is formed by two
independent pathways, in which mnOpccR catalyzes the pivot
reactions between 4-e reduction of 3-OPC-CoA (10) and 2-e
reduction of 3-OPA for its generation. The 4-e reduction uses the
C-terminal domain of MnOpccR to convert 3-OPC-CoA into 3-
OPA and the N-terminal domain further reduces 3-OPA into 3-
HBC. 3-OPA is translocated between the two domains and is not
released during catalysis. For 2-e reduction, 3-OPA is solely
reduced by the N-terminal domain. Inactivation of mnOpccR can
eliminate 4-HBC while, overexpression of mnOpccR together with
hsd4A inactivation can lead to exclusively producing 4-HBC from
phytosterols. By combining this with a two-step chemical process,
4-HBC can be efficiently converted into PG in a scalable way.
Therefore, our results provide two highly efficient processes in
which to manufacture PG and 4-AD, providing a much greener
and economical method than the current routes.
[17] X. Yang, E. Dubnau, I. Smith, N. S. Sampson, Biochemistry 2007, 46,
9058-9067.
[18] V. M. Nikolayeva, O. V. Egorova, D. V. Dovbnya, M. V. Donova, J.
Steroid Biochem. Mol. Biol. 2004, 91, 79-85.
[19] S. Horinouchi, H. Ishizuka, T. Beppu, Appl. Environ. Microbiol. 1991, 57,
1386-1393.
[20] J. Li, A. Vrielink, P. Brick, D. M. Blow, Biochemistry 1993, 32, 11507-
11515.
[21] J. K. Capyk, R. Kalscheuer, G. R. Stewart, J. Liu, H. Kwon, R. Zhao, S.
Okamoto, W. R. Jacobs, L. D. Eltis, W. W. Mohn, J. Biol. Chem. 2009,
284, 35534-35542.
[22] K. Z. Rosłoniec, M. H. Wilbrink, J. K. Capyk, W. W. Mohn, M. Ostendorf,
R. Van Der Geize, L. Dijkhuizen, L. D. Eltis, Mol. Microbiol. 2009, 74,
1031-1043.
[23] M. D. Driscoll, K. J. McLean, C. Levy, N. Mast, I. A. Pikuleva, P. Lafite,
S. E. J. Rigby, D. Leys, A. W. Munro, J. Biol. Chem. 2010,285, 38270-
38282.
[24] M. H. Wilbrink, M. Petrusma, L. Dijkhuizen, R. van der Geize, Appl.
Environ. Microbiol. 2011, 77, 4455-4464.
[25] M. Yang, R. Lu, K. E. Guja, M. F. Wipperman, J. R. St. Clair, A. C. Bonds,
M. Garcia-Diaz, N. S. Sampson, ACS Infect. Dis. 2015, 1, 110-125.
[26] S. T. Thomas, B. C. VanderVen, D. R. Sherman, D. G. Russell, N. S.
Sampson, J. Biol. Chem. 2011, 286, 43668-43678.
Acknowledgements
[27] M. Yang, K. E. Guja, S. T. Thomas, M. Garcia-Diaz, N. S. Sampson, ACS
Chem. Biol. 2014, 9, 2632-2645.
The authors are very grateful to Prof. Xiaoyong Fan and Prof.
Jiaoyu Deng for kindly providing the plasmid pMF406 and M.
smegmatis mc2 155, respectively. This work was financially
supported by the National Key R&D Program of China (Grant Nos.
2018YFC1706200) and the National Natural Science Foundation
of China (Grant Nos. 31970054 and 31570057).
[28] N. M. Nesbitt, X. Yang, P. Fontán, I. Kolesnikova, I. Smith, N. S.
Sampson, E. Dubnau, Infect. Immun. 2010, 78, 275-282.
[29] S. Gilbert, L. Hood, S. Y. K. Seah, J. Bacteriol. 2018, 200, e00512-17.
[30] R. Aggett, E. Mallette, S. E. Gilbert, M. A. Vachon, K. L. Schroeter, M. S.
Kimber, S. Y. K. Seah, J. Biol. Chem. 2019, 294, 11934-11943.
[31] C. J. Shi, Biochim Biophys Acta 1962, 62, 541-547.
[32] W. Wei, F.-q. Wang, S.-y. Fan, D.-z. Wei, Appl. Environ. Microbiol. 2010,
76, 4578-4582.
Keywords: biosynthesis • biosynthetic pathway • steroid • acyl-
[33] M. Petrusma, L. Dijkhuizen, R. van der Geize, Appl. Environ. Microbiol.
2009, 75, 5300-5307.
CoA reductase • semi-synthesis
[34] J. K. Capyk, I. Casabon, R. Gruninger, N. C. Strynadka, L. D. Eltis, J.
Biol. Chem. 2011, 286, 40717-40724.
[1]
L.-B. Xiong, H.-H. Liu, M. Zhao, Y.-J. Liu, L. Song, Z.-Y. Xie, Y.-X. Xu,
F.-Q. Wang, D.-Z Wei, Microb. Cell Fact. 2020, 19, 80.
W.-Y. Tong, X. Dong, Recent Pat. Biotechnol. 2009, 3, 141-153.
M. Bureik, R. Bernhardt, Steroid hydroxylation: microbial steroid
biotransformations using cytochrome P450 enzymes, Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim, 2007
[35] K. Yao, L.-Q. Xu, F.-Q. Wang, D.-Z. Wei, Metab. Eng. 2014, 24, 181-191.
[36] X. Li, X. Chen, Y. Wang, P. Yao, R. Zhang, J. Feng, Q. Wu, D. Zhu, Y.
Ma, Steroids 2018, 132, 40-45.
[2]
[3]
[37] B. B. Shingate, B. G. Hazra, Chem. Rev. 2014, 114, 6349-6382.
[38] S. Fillet, J. L. Adrio, World J. Microbiol. Biotechnol. 2016, 32, 152.
[39] R. M. Willis, B. D. Wahlen, L. C. Seefeldt, B. M. Barney, Biochemistry
2011, 50, 10550-10558.
[4]
[5]
M. V. Donova, O. V. Egorova, Appl. Microbiol. Biotechnol. 2012, 94,
1423-1447.
[40] J. G. Metz, M. R. Pollard, L. Anderson, T. R. Hayes, M. W. Lassner, Plant
Physiol. 2000, 122, 635-644.
R. E. Marker, J. Krueger, J. Am. Chem. Soc. 1940, 62, 3349-3350.
6
This article is protected by copyright. All rights reserved.