Journal of the American Chemical Society
Page 10 of 11
(18) Cook, T. R.; Zheng, Y.-R.; Stang, P. J. Chem. Rev. 2013, 113,
734.
(19) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc.
Chem. Res. 2005, 38, 371.
(20) Han, M.; Engelhard, D. M.; Clever, G. H. Chem. Soc. Rev.
2014, 43, 1848.
(21) Slater, A. G.; Cooper, A. I. Science 2015, 348, 988.
(22) Santolini, V.; Miklitz, M.; Berardo, E.; Jelfs, K. E. Na-
noscale 2017, 9, 5280.
(23) Zhang, G.; Mastalerz, M. Chem. Soc. Rev. 2014, 43, 1934.
(24) Zhang, D.; Martinez, A.; Dutasta, J.-P. Chem. Rev. 2017,
117, 4900.
(25) Jiao, T.; Chen, L.; Yang, D.; Li, X.; Wu, G.; Zeng, P.; Zhou,
A.; Yin, Q.; Pan, Y.; Wu, B.; Hong, X.; Kong, X.; Lynch, V. M.;
Sessler, J. L.; Li, H. Angew. Chem., Int. Ed. 2017, 56, 14545.
(26) Liu, Y.; Hu, C.; Comotti, A.; Ward, M. D. Science 2011, 333,
436.
(27) Cera, L.; Schalley, C. A. Chem. Soc. Rev. 2014, 43, 1800.
(28) Ajami, D.; Rebek, J., Jr. Acc. Chem. Res. 2013, 46, 990.
(29) Rebek, J., Jr. Acc. Chem. Res. 2009, 42, 1660.
(30) Castilla, A. M.; Ramsay, W. J.; Nitschke, J. R. Acc. Chem.
Res. 2014, 47, 2063.
(31) Caulder, D. L.; Powers, R. E.; Parac, T. N.; Raymond, K. N.
Angew. Chem., Int. Ed. 1998, 37, 1840.
(32) Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. Science
2009, 324, 1697.
(33) Brumaghim, J. L.; Michels, M.; Pagliero, D.; Raymond, K.
N. Eur. J. Org. Chem. 2004, 2004, 5115.
(34) Dong, V. M.; Dorothea, F.; Carl, B.; Bergman, R. G.; Ray-
mond, K. N. J. Am. Chem. Soc. 2006, 128, 14464.
(35) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. J. Am.
Chem. Soc. 2007, 129, 11459.
(36) Riddell, I. A.; Smulders, M. M. J.; Clegg, J. K.; Nitschke, J.
R. Chem. Commun. 2011, 47, 457.
(37) Kaphan, D. M.; Toste, F. D.; Bergman, R. G.; Raymond, K.
N. J. Am. Chem. Soc. 2015, 137, 9202.
(38) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Science
2007, 316, 85.
(39) Kaphan, D. M.; Levin, M. D.; Bergman, R. G.; Raymond,
K. N.; Toste, F. D. Science 2015, 350, 1235.
(51) Bai, X.; Jia, C.; Zhao, Y.; Yang, D.; Wang, S.-C.; Li, A.;
Chan, Y.-T.; Wang, Y.-Y.; Yang, X.-J.; Wu, B. Angew. Chem., Int.
Ed. 2017, 57, 1851.
(52) Kleywegt, G. J.; Jones, T. A. Acta Crystallogr. 1994, D50,
178.
(53) VOIDOO is a program that can be employed to calculate
the cavity sizes of macromolecular structures. The cavity volume
can be estimated by using a theoretical probe with an appropri-
ate radius (typically, a water molecule is used with a radius 1.4)
that is put in the cavity and then rolled over the van der Waals
surface of the cavity.
1
2
3
4
5
6
7
8
9
(54) A greater volume for 2 (229 Å3) was estimated using the
DFT optimized structure for cage 2 (without solvent). However,
to avoid any confusion, the X-ray diffraction data of the respec-
tive acetonitrile complexes was used to compare the volumes of
cages 3 and 2.
(55) Park, J.; Feng, D.; Zhou, H.-C. J. Am. Chem. Soc. 2015, 137,
1663.
(56) Umezawa, Y.; Tsuboyama, S.; Takahashi, H.; Uzawat, J.;
Nishiot, M. Tetrahedron 1999, 55, 10047.
(57) Rizzuto, F. J.; Wu, W.-Y.; Ronson, T. K.; Nitschke, J. R.
Angew. Chem., Int. Ed. 2016, 55, 7958.
(58) Mecozzi, S.; Rebek, J., Jr. Chem. Eur. J. 1998, 4, 1016.
(59) Puttreddy, R.; Beyeh, N. K.; Kalenius, E.; Ras, R. H. A.;
Rissanen, K. Chem. Commun. 2016, 52, 8115.
(60) Castilla, A. M.; Ronson, T. K.; Nitschke, J. R. J. Am. Chem.
Soc. 2016, 138, 2342.
(61) Sawada, T.; Hisada, H.; Fujita, M. J. Am. Chem. Soc. 2014,
136, 4449.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(62) Kasai, K.; Aoyagi, M.; Fujita, M. J. Am. Chem. Soc. 2000,
122, 2140.
(63) Host-guest experiments were carried out in CD3CN be-
cause the 1H NMR spectra proved better resolved than in DMSO-
d6. While not explored in detail, the host-guest interactions may
also be enhanced in CD3CN as compared to in DMSO-d6.
(64) Zhou, Z.-B.; Matsumoto, H. Electrochem. Commun. 2007,
9, 1017.
(65) The volume of DFT optimized structure of N2223+ is 235 Å3
(cf. Figure S117). This value is in general line with what was seen
by experiment.
(66) Smulders, M. M. J.; Zarra, S.; Nitschke, J. R. J. Am. Chem.
Soc. 2013, 135, 7039.
(67) Gokhman, D.; Lavi, E.; Prüfer, K.; Fraga, M. F.; Riancho, J.
A.; Kelso, J.; Pääbo, S.; Meshorer, E.; Carmel, L. Science 2014, 344,
523.
(68) Nilsen, T. W. Science 2014, 343, 1207.
(69) Schübeler, D. Nature 2015, 517, 321.
(70) Wood, A.; Shilatifard, A. Adv Protein Chem. 2004, 67, 201.
(71) Zhou, M.; Ni, C.; He, Z.; Hu, J. Org. Lett. 2016, 18, 3754.
(72) Konarev, D. V.; Khasanov, S. S.; Otsuka, A.; Saito, G.;
Lyubovskaya, R. N. J. Am. Chem. Soc. 2006, 128, 9292.
(40) Howlader, P.; Mukherjee, P. S. Chem. Sci. 2016, 7, 5893.
(41) Smulders, M. M. J.; Nitschke, J. R. Chem. Sci. 2012, 3, 785.
(42) Wu, B.; Cui, F.; Lei, Y.; Li, S.; Amadeu, N. D. S.; Janiak, C.;
Lin, Y.-J.; Weng, L.-H.; Wang, Y.-Y.; Yang, X.-J. Angew. Chem.,
Int. Ed. 2013, 52, 5096.
(43) Yang, D.; Zhao, J.; Zhao, Y.; Lei, Y.; Cao, L.; Yang, X.-J.;
Davi, M.; Amadeu, N. D. S.; Janiak, C.; Zhang, Z.; Wang, Y.-Y.;
Wu, B. Angew. Chem., Int. Ed. 2015, 54, 8658.
(44) Yang, D.; Zhao, J.; Yu, L.; Lin, X.; Zhang, W.; Ma, H.;
Gogoll, A.; Zhang, Z.; Wang, Y.; Yang, X.-J.; Wu, B. J. Am. Chem.
Soc. 2017, 139, 5946.
(45) Jia, C.; Wu, B.; Li, S.; Yang, Z.; Zhao, Q.; Liang, J.; Li, Q.-S.;
Yang, X.-J. Chem. Commun. 2010, 46, 5376.
(46) Li, S.; Jia, C.; Wu, B.; Luo, Q.; Huang, X.; Yang, Z.; Li, Q.-
S.; Yang, X.-J. Angew. Chem., Int. Ed. 2011, 50, 5721.
(47) Wu, B.; Li, S.; Lei, Y.; Hu, H.; Amadeu, N. D. S.; Janiak, C.;
Mathieson, J. S.; Long, D.-L.; Cronin, L.; Yang, X.-J. Chem. Eur. J.
2015, 21, 2588.
(48) Yang, D.; Zhao, J.; Yang, X.-J.; Wu, B. Org. Chem. Front.
2018, 5, 622.
(49) Zhao, J.; Yang, D.; Yang, X.-J.; Wu, B. Coord. Chem. Rev.
2018, DOI: 10.1016/j.ccr.2018.01.002.
(50) Jia, C.; Zuo, W.; Yang, D.; Chen, Y.; Cao, L.; Custelcean,
R.; Hostaš, J.; Hobza, P.; Glaser, R.; Wang, Y.-Y.; Yang, X.-J.; Wu,
B. Nat. Commun. 2017, 8, 938.
ACS Paragon Plus Environment