7
mg), Ce2(SO4)3▪4H2O (121.3mg), BiCl3 (94.6mg), AuCl3
12 Liu, X.; Zhang, N.; Bing, T.; Shangguan, D.; Anal. Chem.,
2014, 4, 2289–2296.
ACCEPTED MANUSCRIPT
(123.6mg) were dissolved in 10 mL acetonitrile to get 0.03 mol/L
solution respectively. Then 6.0 ꢀL (3.0 equiv.) or 8.0 ꢀL (4.0
equiv.) ion solution was added into 3.0 mL 2 × 10-5 mol/L TTF-
PBA solution. After mixing them for a few seconds (in 5
seconds), UV-vis and fluorescence spectra tests were taken at
room temperature.
13 Wang, Y.; Wang, C.; Xue, S.; Liang, Q.; Li, Z.; Xu, S.; Rsc
Adv., 2016, 6, 6540-6550.
14 Yang, L.; Zhu, N. W.; Fang, M.; Zhang, Q.; Li, C.
Spectrochim. Acta, Part A, 2013, 109, 186-192.
15 Paul, B. K.; Kar, S.; Guchhait, N. J.; J. Photoch. Photobio. A,
2011, 220, 153-163.
16 Fabian, J.; Nakazumi, H.; Matsuoka, M. Chem. Rev., 1992, 92,
1197-1226.
17 Canevet, D.; Sallé, M.; Zhang, G. X.; Zhang, D. Q.; Zhu, D.
B. Chem. Commun., 2009, 17, 2245-2269.
18 Yamashita, Y. ; Kobayashi, Y. ; Miyashi, T. Angew. Chem.
Int. Edit., 1989, 28, 1052-1053.
19 Bryce, M. R.; Moore, A. J.; Hasan, M.; Ashwell, G. J.; Fraser,
A. T.; Clegg, W.; Hursthouse, M. B.; Karaulov, A. I. Chem.
Int. Edit., 1990, 29, 1450-1452.
4.5. Job’s Plot measurements
600 ꢀL, 540 ꢀL, 480 ꢀL, 420 ꢀL, 360 ꢀL, 300 ꢀL, 240 ꢀL,
180 ꢀL, 120 ꢀL, 60 ꢀL and 0ꢀL 1×10-4 mol/L TTF-PBA solution
were taken and transferred to cuvette. 0 ꢀL, 0.2 ꢀL, 0.4 ꢀL, 0.6
ꢀL, 0.8 ꢀL, 1.0 ꢀL, 1.2 ꢀL, 1.4 ꢀL, 1.6 ꢀL, 1.8 ꢀL and 2.0 ꢀL
0.03 mol/L Cu2+ solution were added into each cuvette, then each
cuvette was dilute to 3.0 mL. After mixing for a few seconds (in
5 seconds), fluorescence spectra tests were taken at room
temperature.
20 Moore, A. J.; Bryce, M. R. J. Chem. Soc., Perkin Trans.
1,1991, 1, 157-168.
4.6 Calculation of detection limit
21 Lerouge, M. H.; Chesneau, B.; Allain, M.; Hudhomme, P.; J.
Org. Chem., 2012, 77, 2441-2445.
22 Ma, Y.; Lai, G.; Li, Z.; Wang, C.; Shen, Y. Tetrahedron, 2015,
71, 8717-8724.
23 Mandal, S. K.; Que, L.; Inorg. Chem., 1997, 36, 5424-5425.
24 Ding, H.; Liang, C. S.; Sun, K. B.; Wang, H. J.; Hiltunen, K.;
Chen, Z. J.; Shen, J. C. Biosens. Bioelectron, 2014, 59, 216-
220.
25 Gillissen, M. A. J.; Voets, I. K.; Meijer, E. W.; Palmans, A. R.
A. Polym. Chem., 2012, 3, 3166-3174.
The detection limit was determined from the fluorescence
titration data based on 3σ/K. Ten times of fluorescence intensity
of TTF-PBA were tested and σ can be calculated. According to
the result of fluorescence titrating experiment, the fluorescent
intensity data of TTF-PBA were normalized between the
minimum intensity and the maximum intensity respectively when
excited at 430 nm. The linear regression curve was then fitted to
these normalized fluorescent intensity data, and the slop K of line
could be calculated.
26 Chen, G.; Bouzan, S.; Zhao, Y. M. Tetrahedron Lett., 2010,
51, 6552-6556.
27 Gong, Z.; Zhong, Y.; Organometallics, 2013, 32, 7495-7502.
28 Guldi, D. M.; Sánchez, L.; Martin, N.; J. Phus. Chem. B, 2012,
105, 7139-7144.
Acknowledgements
This work is sponsored by Natural Science Foundation of
Shanghai (16ZR1408000), and the National Natural Science
Foundation of China (No. 21576087).
29 Huang, R.; Zuo, H.; Zhang, L.; Wang, C.; Shen, Y. Polym.
Bull., 2015, 72, 2527-2536.
30 Choi, W.; Harada, D.; Oyaizu, K.; Nishide, H. J. J. Am. Chem.
Soc., 2011, 133, 19839-19843.
31 Hasegawa, M.; Takeda, K.; Kuwatam, Y.; Yoshida, M.;
Matsuyama, Iyoda, H. M. J. Sulfur. Chem., 2009, 30, 301-308.
32 Chen, G.; Bouzan, S.; Zhao, Y. M.; Tetrahedron Lett., 2010,
51, 6552-6556.
33 Yang,S. Z.; Yan, H.; Ren, X. Y.; Shi, X. K.; Li, J.; Wang, Y.
L.; Huang, G. S. Tetrahedron, 2013, 69, 6431-6435.
34 Ma, Y.; Leng, T.; Lai, G.; Li, Z.; Xu, X.; Zou, J.; Shen, Y.;
Wang, C. Tetrahedron, 2016, 72, 2219-2225.
Supplementary data
1H-NMR, 13C-NMR, and MS of TTF-PBA are available.
Additional graphs for calculation of detection limit and binding
constant can be found in ESI.
References
1 Cheng, X. W.; Zhou, Y.; Fang, Y.; Rui, Q. Q.; Yao, C. RSC
Adv., 2015, 5, 19465-19469.
2 Fang, Y.; Ni, Y.; Choi, B.; Leo, S. Y.; Gao, J.; Ge, B.; Taylor,
C.; Basile, V.; Jiang, P. Adv. Mater., 2015, 27, 3696-3704.
3 Zhang, L.; Han, Y.; Zhao, F.; Shi, G.; Tian, Y.; Anal. Chem.,
2015, 87, 2931-2936.
4 Zhang, R. X.; Zhuang, X. Y.; Liu, S.; Song, F. G.; Liu, Z. Q.
Anal. Methods., 2014, 6, 5746-5752.
5 Puangploy, P.; Smanmoo, S.; Surareungchai, W.; Sensor
Actuat. B-Chem., 2014, 193, 679-686.
6 Zhao, X.; Tian, D.; Gao, Q.; Sun, H.; Xu, J.; Bu, X. Dalton
Trans., 2016, 45, 1040-1046.
7 Park, G. J.; Hwang, I. H.; Song, E. J.; Kim, H.; Kim, C.
Tetrahedron, 2014, 70, 2822-2828.
8 Zhang, Z. M.; Shi, Y. P.; Pan, Y.; Cheng, X.; Zhang, L. L.;
Chen, J. Y.; Li, M. J.; Yi, C. Q. J. Mater. Chem. B, 2014, 2,
5020-5027.
9 He, X.; Zhang, J.; Liu, X.; Dong, L.; Li, D.; Qiu, H., Yin, S.
Sensor Actuat. B-Chem., 2014, 192, 29-35.
10 Kumar, M.; Kumar, N.; Bhalla, V.; Sharma, P. R.; Kaur, T.
Org. Lett., 2011, 14, 406–409.
11 Georgopoulos, P. G.; Roy, A.; Yonone Lioy, M. J.; Opiekun,
R. E.; Lioy, P. J. J. Toxicol. Env. Heal. B, 2001, 4, 341–394.