ORGANIC
LETTERS
2005
Vol. 7, No. 20
4451-4454
Functionally Layered Dendrimers: A
New Building Block and Its Application
to the Synthesis of Multichromophoric
Light-Harvesting Systems
William R. Dichtel, Stefan Hecht,† and Jean M. J. Fre´chet*
Department of Chemistry, UniVersity of CaliforniasBerkeley, Berkeley, California
94720, and Materials Science DiVision, Lawrence Berkeley National Laboratory,
Berkeley, California 94720-1460
Received July 17, 2005
ABSTRACT
A divergent synthesis of internally functionalized dendrimers based on a modular functional monomer has been developed. This strategy was
applied to the construction of a light-harvesting dendrimer containing one set of naphthopyranone dyes located at the interior and another
set of coumarin chromophores located in the adjacent outer layer surrounding a porphyrin acceptor. Quantitative energy transfer from both
donor pigments is observed, giving rise to exclusive emission from the porphyrin core over all excitation wavelengths.
In recent years, the special architecture of dendrimers1,2 has
been exploited in the design of functional macromolecules
both capable of mimicking many natural phenomena,3 such
as site isolation,3-5 catalysis,6-13 and light-harvesting,13-18
and useful in a variety of technological19-21 or therapeutic22
applications. Due to available synthetic protocols, functional
groups have typically been incorporated at the core and/or
periphery of the dendrimer, with the backbone acting only
as a passive scaffold separating these two domains. The
difficult functionalization of the interior of the dendrimer23
constitutes a serious obstacle to the full exploitation of the
dendritic scaffold.24-28 For example, internally functionalized
layered structures are desirable to establish complex energy
gradients25,26 between core and periphery or to tailor specific
properties of the dendritic interior.13,25
As a first example of the complex structures readily
accessed via this synthetic approach, the sophisticated light-
harvesting system 1 was synthesized containing two different
types of donor chromophores in a layered arrangement
† Current address: Max-Planck-Institut fu¨r Kohlenforschung 45470
Mu¨lheim an der Ruhr, Germany.
(1) Fre´chet, J. M. J.; Tomalia, D. Dendrimers and Other Dendritic
Polymers; Wiley: Chichester, U.K., 2001.
(2) Newkome, G. R.; Moorefield, C. N.; Vo¨gtle, F. Dendritic Mol-
ecules: Concepts, Synthesis, PerspectiVes; Wiley-VCH: Weinheim, Ger-
many, 2001.
(3) Hecht, S.; Fre´chet, J. M. J. Angew. Chem., Int. Ed. 2001, 40, 74.
(4) Furuta, P.; Brooks, J.; Thompson, M. E.; Fre´chet, J. M. J. J. Am.
Chem. Soc. 2003, 125, 13165.
(5) Furuta, P.; Fre´chet, J. M. J. J. Am. Chem. Soc. 2003, 125, 13173.
(6) Kreiter, R.; Kleij, A. W.; Gebbink, R. J. M. K.; van Koten, G. Top.
Curr. Chem. 2001, 163.
(7) van Heerbeek, R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek,
J. N. H. Chem. ReV. 2002, 102, 3717.
(8) Twyman, L. J.; King, A. S. H.; Martin, I. K. Chem. Soc. ReV. 2002,
31, 69.
(10) Crooks, R. M.; Zhao, M. Q.; Sun, L.; Chechik, V.; Yeung, L. K.
Acc. Chem. Res. 2001, 34, 181.
(11) Liang, C. O.; Helms, B.; Hawker, C. J.; Fre´chet, J. M. J. Chem.
Commun. 2003, 2524.
(12) Hecht, S.; Fre´chet, J. M. J. J. Am. Chem. Soc. 2001, 123, 6959.
(13) Piotti, M. E.; Rivera, F., Jr.; Bond, R.; Hawker, C. J.; Fre´chet, J.
M. J. J. Am. Chem. Soc. 1999, 121, 9471.
(14) Adronov, A.; Fre´chet, J. M. J. Chem. Commun. 2000, 1701.
(15) Balzani, V.; Ceroni, P.; Maestri, M.; Vicinelli, V. Curr. Opin. Chem.
Biol. 2003, 7, 657.
(9) Astruc, D.; Chardac, F. Chem. ReV. 2001, 101, 2991.
10.1021/ol0516824 CCC: $30.25
© 2005 American Chemical Society
Published on Web 09/08/2005