Chemical Science
Edge Article
0
0
T-mixer (0.04 i.d.) also heated to the temperature of the reac-
9 C. Jim ´e nez-Gonz ´a lez, P. Poechlauer, Q. B. Broxterman,
B.-S. Yang, D. am Ende, J. Baird, C. Bertsch, R. E. Hannah,
P. Dell'Orco, H. Noorman, S. Yee, R. Reintjens, A. Wells,
V. Massonneau and J. Manley, Org. Process Res. Dev., 2011,
15, 900–911.
tion. The NaOH–diphenhydramine hydrochloride mixture
owed through a 120 mL segment of tubing for mixing before
exiting the 250 psi back-pressure regulator. Aer passing four
residents of solution, sample for analysis was collected for ve
ꢀ
minutes. Aer collecting, the sample was cooled to 5 C. The 10 S. Shankar, S. J. Pandurang and M. D. Namdeo, IN Pat.,
mother liquor was decanted and the solid was rinsed twice with
2007MU01210 A, 2009.
cold acetone. The solid was dissolved in D O and DMF was 11 R. N. Brummel and J. Vande Vusse, GB Pat., 2 176 477 A,
2
added as an external standard (62.7 mL, 807 mmol). Yield and
ratios were analyzed by H NMR.
1986.
1
12 (a) A. Große B ¨o wing and A. Jess, Green Chem., 2005, 7, 230–
2
35; (b) D. A. Waterkamp, M. Heiland, M. Schl u¨ ter,
J. C. Sauvageau, T. Beyersdorff and J. Th ¨o ming, Green
Chem., 2007, 9, 1084–1090; (c) A. Renken, V. Hessel,
P. L ¨o b, R. Miszczuk, M. Uerdingen and L. Kiwi-Minsker,
Chem. Eng. Process., 2007, 46, 840–845; (d) M. A. Gonzalez
and J. T. Ciszewski, Org. Process Res. Dev., 2009, 13, 64–66;
(e) D. Wilms, J. Klos, A. F. M. Kilbinger, H. L ¨o we and
H. Frey, Org. Process Res. Dev., 2009, 13, 961–964; (f)
H. L ¨o we, R. D. Axinte, D. Breuch and C. Hofmann, Chem.
Eng. J., 2009, 155, 548–550; (g) D. A. Waterkamp,
M. Engelbert and J. Th ¨o ming, Chem. Eng. Technol., 2009,
Acknowledgements
This work was nancially supported by the Defense Advanced
Research Projects Agency (DARPA N66001-11-C-4147). We
would like to thank Prof. Klavs F. Jensen, Prof. Allan S. Myerson,
and their research groups for helpful discussions and the MIT
Central Machine Shop for assistance in construction of the in-
line separators.
Notes and references
32, 1717–1723; (h) J. Zimmermann, B. Ondruschka and
1
2
G. Rieveschl, US Pat., 2 421 714, 1947.
P. T. Anastas and J. C. Warner, Green Chemistry: Theory and
Practice, Oxford University Press, New York, 1998.
K. Plumb, Chem. Eng. Res. Des., 2005, 83(A6), 730–738.
(a) D. M. Roberge, L. Ducry, N. Bieler, P. Cretton and
B. Zimmermann, Chem. Eng. Technol., 2005, 28, 318–323; (b)
D. M. Roberge, B. Zimmermann, F. Rainone, M. Gottsponer,
M. Eyholzer and N. Kockmann, Org. Process Res. Dev., 2008,
A. Stark, Org. Process Res. Dev., 2010, 14, 1102–1109; (i)
S. Hu, A. Wang, H. L ¨o we, X. Li, Y. Wang, C. Li and
D. Yang, Chem. Eng. J., 2010, 162, 350–354; (j) H. L ¨o we,
R. D. Axinte, D. Breuch, C. Hofmann, J. H. Petersen,
R. Pommersheim and A. Wang, Chem. Eng. J., 2010, 163,
429–437; (k) N. Ehm and H. L ¨o we, Org. Process Res. Dev.,
2011, 15, 1438–1441; (l) M. N. Kashid, A. Renken and
L. Kiwi-Minsker, Chem. Eng. Sci., 2011, 66, 1480–1489; (m)
H. Iken, F. Guillen, H. Chaumat, M.-R. Mazi `e res,
J.-C. Plaquevent and T. Tzedakis, Tetrahedron Lett., 2012,
53, 3474–3477.
3
4
12, 905–910; (c) S. D. Schaber, D. I. Gerogiorgis,
R. Ramachandran, J. M. B. Evans, P. I. Barton and
B. L. Trout, Ind. Eng. Chem. Res., 2011, 50, 10083–10092.
5
(a) A. I. Stankiewicz and J. A. Moulijn, Chem. Eng. Prog., 2000, 13 R. L. Hartman, Org. Process Res. Dev., 2012, 16, 870–887.
2
1
2
2–34; (b) V. Hessel, Chem. Eng. Technol., 2009, 32, 1655– 14 (a) J. Stoimenovski, D. R. MacFarlane, K. Bica and
681; (c) I. Plazl and A. Pohar, Chem. Biochem. Eng. Q.,
009, 23, 537–544.
(a) K. F. Jensen, Chem. Eng. Sci., 2001, 56, 293–303; (b)
R. D. Rogers, Pharm. Res., 2010, 27, 521–526; (b) R. Ferraz,
L. C. Branco, C. Prud ˆe ncio, J. P. Noronha and Z. Petrovski,
ChemMedChem, 2011, 6, 975–985.
6
7
L. Kang, B. G. Chung, R. Langer and A. Khademhosseini, 15 J. G. Kralj, H. R. Sahoo and K. F. Jensen, Lab Chip, 2007, 7,
Drug Discovery Today, 2008, 13, 1–13.
256–263.
(a) G. M. Whitesides, Nature, 2006, 442, 368–373; (b) 16 (a) H. R. Sahoo, J. G. Kralj and K. F. Jensen, Angew. Chem.,
B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan
and D. T. McQuade, Chem. Rev., 2007, 107, 2300–2318; (c)
P. Watts and C. Wiles, Org. Biomol. Chem., 2007, 5, 727–
Int. Ed., 2007, 46, 5704–5708; (b) C. H. Hornung,
M. R. Mackley, I. R. Baxendale and S. V. Ley, Org. Process
Res. Dev., 2007, 11, 399–405; (c) R. L. Hartman, J. R. Naber,
S. L. Buchwald and K. F. Jensen, Angew. Chem., Int. Ed.,
2010, 49, 899–903; (d) T. Tricotet and D. F. O'Shea, Chem.–
Eur. J., 2010, 16, 6678–6686; (e) T. No ¨e l, S. Kuhn,
A. J. Musacchio, K. F. Jensen and S. L. Buchwald, Angew.
Chem., Int. Ed., 2011, 50, 5943–5946; (f) M. O'Brien,
P. Koos, D. L. Browne and S. V. Ley, Org. Biomol. Chem.,
2012, 10, 7031–7036; (g) A. E. Cervera-Padrell,
S. T. Morthensen, D. J. Lewandowski, T. Skovby, S. Kiil and
K. V. Gernaey, Org. Process Res. Dev., 2012, 16, 888–900.
732; (d) R. L. Hartman and K. F. Jensen, Lab Chip, 2009, 9,
2495–2507; (e) D. Webb and T. F. Jamison, Chem. Sci.,
2010, 1, 675–680; (f) J. Wegner, S. Ceylan and
A. Kirschning, Chem. Commun., 2011, 47, 4583–4592; (g)
R. L. Hartman, J. P. McMullen and K. F. Jensen, Angew.
Chem., Int. Ed., 2011, 50, 7502–7519; (h) C. Wiles and
P. Watts, Micro Reaction Technology in Organic Synthesis,
CRC Press, Boca Raton, 2011.
8
American Chemical Society, Sustainable Manufacturing:
Roadmaps, http://www.acs.org/smrt, accessed 21 December 17 S. Y. Wong, J. Chen, L. E. Forte and A. S. Myerson, Org.
012.
Process Res. Dev., 2013, 17, 684–692.
2
Chem. Sci.
This journal is ª The Royal Society of Chemistry 2013