Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
binding of CCNPs, chiral adsorption measurements of proline points of chiral inversion, (-)-/(+)-sparteine. The physico-
DOI: 10.1039/C6CC02525K
enantiomers were also performed onto the (-)- and (+)-SP/CNP chemical integrity of the obtained CCNPs was investigated by
(Fig. 4). The adsorption pattern and ratio were similar to those UV-Vis, fluorescence, FT-IR, NMR, Raman, DLS, AFM, TEM and
of cysteine. (-)-SP/CNP resulted in 17% ee of L-proline zeta potential studies. As a result of the passivation using (-)-
enantiomer whereas (+)-SP/CNP resulted in 14% ee for D- /(+)-sparteine, the CNPs were rendered chiral. Their chiroptical
proline enantiomer. These results were also supported by response was confirmed using circular dichroism and
polarimeter studies (Table 1).
polarimetry techniques. We demonstrated that these CCNPs
could be used as a chiral adsorbent for enantiospecific binding.
Table 1. Polarimetry study of adsorption of cysteine The % ee obtained in this work is better or comparable than that
enantiomers into (-)-SP/CNP.a
of similar adsorbants.7g The method excels due to its simplicity
and low cost of the materials used. The general method to
prepare chiral CNPs described here opens a new route to
prepare a broad variety of chiral CNPs with other chiral
passivating agents and we can envision enantiomeric
enrichment and separation of racemic mixtures.
Notes and references
1
(a) L. A. Nguyen, H. He and C.P. Huy, Int J Biomed Sci., 2006,
85. (b) L. Hong Expert Opin. Drug Met., 2007, , 149.
(a) T. Yasukawa, H. Miyamuraand S. Kobayashi, Chem. Soc.
Rev., 2014, 43, 1450. (b) Y. Xia, Y. Zhou and Z. Tang,
2,
3
2
Nanoscale, 2011,
3, 1374. (c) T. Mori, A. Sharma and T.
aA solution of [L-/D-Cys] or [L-/D-Pro] = 25 mM was treated with 6 mg of (-)-SP/CNP
prepared from (-)-sparteine:sugar = 2:1.
Hegmann, ACS Nano, 2016, 10, 1552.
3
4
(a) G. Shemer, O. Krichevski, G. Markovich, T. Molotsky, I.
Lubitz and A. B. Kotlyar, J. Am. Chem. Soc., 2006, 128, 11006.
(b) C. L. Chen, P. J. Zhang and N. L. Rosi, J. Am. Chem. Soc.
2008, 130, 13555. (c) Y. L. Zhou, M. Yang, K. Sun, Z. Y. Tang
and N. A. Kotov, J. Am. Chem. Soc., 2010, 132, 6006. (d) T. G.
Schaaff and R. L. Whetten, J. Phys. Chem. B, 2000, 104, 2630.
(e) M. P. Moloney, Y. K. Gun’ko and J. M. Kellya, Chem.
Commun., 2007, 3900.
(a) T. Delgado-Pérez, L. M. Bouchet, M. de la Guardia, R. E.
Galian and J. Pérez-Prieto, Chemistry, 2013, 19, 11068. (b) W.
Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang and N. A. Kotov,
Nat. Commun., 2013, 4, 2689. (c) N. Shukla, M. A. Bartel and
A. J. Gellman, J. Am. Chem. Soc., 2010, 132, 8575.
K. T. Yong, W.-C. Law, R. Hu, L. Ye, L. Liu, M. T. Swihart and P.
N. Prasad, Chem. Soc. Rev., 2013, 42, 1236.
(a) L. C. Preiss, L. Werber, V. Fischer, S. Hanif, K. Landfester, Y.
Mastai and R. Muñoz-Espí, Adv. Mater., 2015, 27, 2728. (b) T.
Menahem and Y. Mastai, J. Polym. Sci. A Polym. Chem., 2006,
44, 3009. (c) S. R. Adler and Y. Mastai, React. Funct. Polym.,
2015, 96, 1.
5
6
Fig. 4 Circular dichroism spectra and adsorption ratio of L-/D-Proline by (A, B) (-)-
SP/CNP and (C, D) (+)-SP/CNP. Absorbance of L- and D- cysteine solution (circles
and squares, respectively) by (-)-SP/CNP (A) and (+)-SP/CNP (C). Blank symbols
correspond to signals from the original solution of 2mM concentration before
treatment while filled symbols correspond to signals of the spectra after
treatment with (-)-SP/CNP or (+)-SP/CNP. Chiral CNPs were prepared from (-)- or
(+)-sparteine:sugar = 2:1. Bar chart of the adsorption ratio for both the chiral CNPs
(B, D).
7
(a) P. Mukherjee, S. K. Misra, M. C. Gryka, H. H. Chang, S.
Tiwari, W. L. Wilson, J. W. Scott, R. Bhargava and D. Pan, Small
2015, 11, 4691. (b) Y. Wang and A. Hu, J. Mater. Chem. C,
2014, 2, 6921. (c) J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H.
Huang, Y. Lifshitz, S. T. Lee, J. Zhong and Z. Kang, Science,
2015, 347, 970. (d) M. Vazquez-Nakagawa, L. Rodrı´guez-
Pe´rez, M. A. Herranz and N. Martin, Chem. Commun., 2016,
52, 665. (e) H. Peng and J. Travas-Sejdic, Chem. Mater., 2009,
21, 5563. (f) M. Xu, S. Xu, Z. Yang, M. Shu, G. He, D. Huang, L.
The observed enantioselectivity is presumably due to the
preferential binding of the optically pure amino acids with the
chiral surfaces of carbon nanoparticles induced by the
abundance of (-) or (+)-sparteine functionalities. In order to
experimentally confirm this, we studied the effect of
incremental additions of L-Cysteine on (-)-sparteine by CD
spectroscopy (Fig. S5). A shift at 215 nm for (-)-sparteine to 208-
209 nm was noticed after the addition of L-Cys (Fig. S5A). A
negligible shift was observed for (+)-sparteine demonstrating
that L-Cys has significantly higher enantioselective interaction
Zhang, L. Li, D. Cui and Y. Zhang, Nanoscale, 2015, 7, 15915.
(g) I. Fuchs, N. Fechler, M. Antonietti and Y. Mastai, Angew.
Chem. Int. Ed. 2016, 55, 408.
8
9
(a) P. Beak, A. Basu, D. J. Gallagher, Y. S. Park, and S.
Thayumanavan, Acc. Chem. Res., 1996, 29, 552. (b) D. Hoppe
and T. Hense, Angew. Chem. Int. Ed. Engl., 1997, 36, 2282. (c)
H. Maheswaran, K. L. Prasanth, G. G. Krishna, K. Ravikumar, B.
Sridhar and M. Lakshmi Kantam, Chem. Commun., 2006, 39
,
4066. (d) O. Chuzel, and O. Riant, Top Organomet Chem, 2005,
15, 59.
with (-)-sparteine than (+)-sparteine. In
conclusion,
we
B. Jasiewicz, T. Rafałowicz, E. Sikorska, I. Khmelinskii, J.
Koputa, M. Sikorskia and W. Z. Boczon, Naturforsch. 2003,
58b, 1133.
report the development of chiral CNPs by surface passivation
with a chiral ligand of high asymmetric response with restricted
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins