The Journal of Physical Chemistry A
Article
Finally, we estimated the number of nitroxide molecules
grafted on the ND surface by comparing X-band EPR spectra of
(7) Degen, C. L. Scanning Magnetic Field Microscope with a
Diamond Single-Spin Sensor. Appl. Phys. Lett. 2008, 92, 243111.
(8) Taylor, J. M.; Cappellaro, P.; Childress, L.; Jiang, L.; Budker, D.;
5
and 6. As shown in Figure 5d, the intensity of 6 (100 nm
Hemmer, P. R.; Yacoby, A.; Walsworth, R.; Lukin, M. D. High-
Sensitivity Diamond Magnetometer with Nanoscale Resolution. Nat.
Phys. 2008, 4, 810−816.
NDs) is 13% of the 500 μM free nitroxide radicals (5);
therefore, the concentration of nitroxide radicals in 6 is ∼67
μM. Given that the sample volume is ∼5 μL, the number of
(9) Holt, K. B. Diamond at the Nanoscale: Applications of Diamond
1
4
nitroxide molecules in the sample is ∼2 × 10 . The sample also
Nanoparticles from Cellular Biomarkers to Quantum Computing.
3
contains 1 mg of 100 nm NDs. Using 3.1 g/cm for the density
Philos. Trans. R. Soc., A 2007, 365, 2845−2861.
4
3
−16
3
of 100 nm NDs and ∼5 × 10 cm for the volume of one
(10) Tisler, J.; Balasubramanian, G.; Naydenov, B.; Kolesov, R.;
1
00 nm diameter spherical ND, the number on ND particles in
Grotz, B.; Reuter, R.; Boudou, J.-P.; Curmi, P. A.; Sennour, M.;
Thorel, A.; et al. Fluorescence and Spin Properties of Defects in Single
Digit Nanodiamonds. ACS Nano 2009, 3, 1959−1965.
1
1
the sample holder is ∼6 × 10 . Thus, each 100 nm ND has
∼
300 nitroxide radicals on the surface. Similarly, with 3.52 g/
3
44
−18
3
cm for the density of 25 nm NDs and ∼8 × 10 cm for
the volume of one 100 nm diameter spherical ND, we found
that each 25 nm ND has ∼20 nitroxides on the surface.
̈
(11) Hall, L. T.; Hill, C. D.; Cole, J. H.; Stadler, B.; Caruso, F.;
Mulvaney, P.; Wrachtrup, J.; Hollenberg, L. C. L. Monitoring Ion-
Channel Function in Real Time through Quantum Decoherence. Proc.
Natl. Acad. Sci. 2010, 107, 18777−18782.
(12) McGuinness, L. P.; Yan, Y.; Stacey, A.; Simpson, D. A.; Hall, L.
CONCLUSIONS
■
T.; Maclaurin, D.; Prawer, S.; Mulvaney, P.; Wrachtrup, J.; Caruso, F.;
et al. Quantum Measurement and Orientation Tracking of Fluorescent
Nanodiamonds inside Living Cells. Nat. Nanotechnol. 2011, 6, 358−
363.
We demonstrated grafting of nitroxide radicals on the ND
surface using click chemistry. The reaction of the grafting was
verified by FTIR spectroscopy. We also employed X-band and
2
30 GHz EPR spectroscopy to verify the covalent attachment
(13) Huang, T.; Tzeng, Y.; Liu, Y. K.; Chen, Y. C.; Walker, K. R.;
Guntupalli, R.; Liu, C. Immobilization of Antibodies and Bacterial
Binding on Nanodiamond and Carbon Nanotubes for Biosensor
Applications. Diamond Relat. Mater. 2004, 13, 1098−1102.
of nitroxides. The EPR measurements revealed that dynamics
of nitroxide molecules on a ND surface are more constrained
than those of free nitroxide radicals. The observation strongly
suggests successful grafting of nitroxides on NDs. We also
estimated that the number of nitroxide radicals attached on a
surface of NDs using the EPR method is ∼300 for 100 nm and
(
14) Kong, X.; Huang, L. C. L.; Liau, S.-C. V.; Han, C.-C.; Chang, H.-
C. Polylysine-Coated Diamond Nanocrystals for Maldi-Tof Mass
Analysis of DNA Oligonucleotides. Anal. Chem. 2005, 77, 4273−4277.
(15) Bondar, V. S.; Pozdnyakova, I. O.; Puzyr, A. P. Applications of
∼
20 for 25 nm NDs.
Nanodiamonds for Separation and Purification of Proteins. Phys. Solid
State 2004, 46, 758−760.
AUTHOR INFORMATION
(16) Fu, C.-C.; Lee, H.-Y.; Chen, K.; Lim, T.-S.; Wu, H.-Y.; Lin, P.-
K.; Wei, P.-K.; Tsao, P.-H.; Chang, H.-C.; Fann, W. Characterization
and Application of Single Fluorescent Nanodiamonds as Cellular
Biomarkers. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 727−732.
■
*
Notes
(17) Neugart, F.; Zappe, A.; Jelezko, F.; Tietz, C.; Boudou, J. P.;
The authors declare no competing financial interest.
Krueger, A.; Wrachtrup, J. Dynamics of Diamond Nanoparticles in
Solution and Cells. Nano Lett. 2007, 7, 3588−3591.
(18) Huang, H.; Pierstorff, E.; Osawa, E.; Ho, D. Protein-Mediated
ACKNOWLEDGMENTS
■
Assembly of Nanodiamond Hydrogels into a Biocompatible and
We thank X. Zhang for support to perform the X-band EPR
measurements. This work was supported by the Searle scholars
program (S.T.).
Biofunctional Multilayer Nanofilm. ACS Nano 2008, 2, 203−212.
(19) Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The
Properties and Applications of Nanodiamonds. Nat. Nanotechnol.
2
011, 7, 11−23.
REFERENCES
(20) Krueger, A. Beyond the Shine: Recent Progress in Applications
of Nanodiamond. J. Mater. Chem. 2011, 21, 12571.
■
(
1) Hanson, R.; Dobrovitski, V. V.; Feiguin, A. E.; Gywat, O.;
Awschalom, D. D. Coherent Dynamics of a Single Spin Interacting
with an Adjustable Spin Bath. Science 2008, 320, 352−355.
2) Childress, L.; Dutt, M. V. G.; Taylor, J. M.; Zibrov, A. S.; Jelezko,
F.; Wrachtrup, J.; Hemmer, P. R.; Lukin, M. D. Coherent Dynamics of
Coupled Electron and Nuclear Spin Qubits in Diamond. Science 2006,
(
21) Williams, O. A. Nanocrystalline Diamond. Diamond Relat.
Mater. 2011, 20, 621−640.
22) Ando, T.; Inoue, S.; Ishii, M.; Kamo, M.; Sato, Y. Fourier-
(
(
Transform Infrared Photoacoustic Studies of Hydrogenated Diamond
Surfaces. J. Chem. Soc. Faraday Trans. 1993, 89, 749−751.
(
23) Krueger, A.; Liang, Y. J.; Jarre, G.; Stegk, J. Surface
3
(
14, 281−285.
Functionalisation of Detonation Diamond Suitable for Biological
3) Gaebel, T.; Domhan, M.; Popa, I.; Wittmann, C.; Neumann, P.;
Applications. J. Mater. Chem. 2006, 16, 2322−2328.
Jelezko, F.; Rabeau, J. R.; Stavrias, N.; Greentree, A. D.; Prawer, S.;
et al. Room-Temperature Coherent Coupling of Single Spins in
Diamond. Nat. Phys. 2006, 2, 408−413.
4) Takahashi, S.; Hanson, R.; Tol, J. v.; Sherwin, M. S.; Awschalom,
D. D. Quenching Spin Decoherence in Diamond through Spin Bath
(24) Liu, Y.; Gu, Z. N.; Margrave, J. L.; Khabashesku, V. N.
Functionalization of Nanoscale Diamond Powder: Fluoro-, Alkyl-,
Amino-, and Amino Acid-Nanodiamond Derivatives. Chem. Mater.
(
2
(
004, 16, 3924−3930.
25) Spitsyn, B. V.; Denisov, S. A.; Skorik, N. A.; Chopurova, A. G.;
Polarization. Phys. Rev. Lett. 2008, 101, 047601.
Parkaeva, S. A.; Belyakova, L. D.; Larionov, O. G. The Physical-
Chemical Study of Detonation Nanodiamond Application in
Adsorption and Chromatography. Diamond Relat. Mater. 2010, 19,
123−127.
(26) Ida, S.; Tsubota, T.; Hirabayashi, O.; Nagata, M.; Matsumoto,
Y.; Fujishima, A. Chemical Reaction of Hydrogenated Diamond
Surface with Peroxide Radical Initiators. Diamond Relat. Mater. 2003,
12, 601−605.
(
5) Maze, J. R.; Stanwix, P. L.; Hodges, J. S.; Hong, S.; Taylor, J. M.;
Cappellaro, P.; Jiang, L.; Dutt, M. V. G.; Togan, E.; Zibrov, A. S.; et al.
Nanoscale Magnetic Sensing with an Individual Electronic Spin in
Diamond. Nature 2008, 455, 644−647.
(
6) Balasubramanian, G.; Chan, I. Y.; Kolesov, R.; Al-Hmoud, M.;
Tisler, J.; Shin, C.; Kim, C.; Wojcik, A.; Hemmer, P. R.; Krueger, A.;
et al. Nanoscale Imaging Magnetometry with Diamond Spins under
Ambient Conditions. Nature 2008, 455, 648.
F
dx.doi.org/10.1021/jp403183x | J. Phys. Chem. A XXXX, XXX, XXX−XXX