3
The obtained 14 was then hydrolyzed with lithium hydroxide
(LiOH) to give the desired 3 in 95% yield. For this route, the
protected side chain was prepared from L-ascorbic acid over five
steps in 16% overall yield, which involved fewer steps and
slightly better yield than the previous synthetic route.
the semi-synthesis of cnicin 1’. This is the first reported
synthetic study of cnicin 1. The results are expected to aid further
efforts toward developing the first total synthesis of cnicin 1 for
SAR studies.
Acknowledgments
Next, esterification between the synthetic side chain moiety
and the salonitenolide derivative was investigated (Scheme 4).
For the preparation of the salonitenolide derivative, isolation of
cnicin 1 was carried out from Cnicus benedictus according to the
literature procedure.8a,18 Hydrolysis of 1 using 0.1 N sodium
carbonate (Na2CO3) was then conducted at room temperature for
16 h to afford salonitenolide19 15 in 51% yield.20 Then, treatment
of 15 with TIPSCl, imidazole, and DMAP at 0 °C for 2 h afforded
TIPS-protected salonitenolide derivative 2 in 63% yield.
We thank Dr. Michael Adams (University of Basel, currently
Bacoba AG, Switzerland) for valuable discussion.
References and notes
1. Suchý, M.; Benešová, V.; Herout, V.; Šorm, F. Tetrahedron Lett.
1959, 10, 5-9.
2. Kelsey, R. G.; Locken, L. J. J. Chem. Ecol. 1987, 13, 19-33.
3. Saroglou, V.; Karioti, A.; Demetzos, C.; Dimas, K.; Skaltsa, H. J.
Nat. Prod. 2005, 68, 1404-1407.
4. Johrer, K.; Obkircher, M.; Neurelter, D.; Partell, J.; Zelle-Rieser,
C.; Maizner, E.; Kern, J.; Hermann, M.; Hamacher, F.; Markel,
O.; Wacht, N.; Zidorn, C.; Scheideler, M.; Grell, R. J. Mol. Med.
2012, 90, 681-693.
O
8
O
OH
a
b
HO
HO
HO
O
O
OH
HO
O
O
cnicin (1)
salonitenolide (15)
5. Gonzalez, A. G.; Darias, V.; Alonso, G.; Boada, J. N.; Feria, M.
O
Planta Med. 1978, 33, 356-359.
6. Marco, J. A.; Sanz-Cervera, J. F.; Yuste, A.; Sancenón, F.; Carda,
M. Phytochemistry 2005, 66, 1644-1650.
O
O
3
O
7. Zimmermann, S.; Fouché, G.; Mieri, M, D.; Yoshimoto, Y.;
Usuki, T.; Nthambeleni, R.; Parkinson, C, J.; van der Westhuyzen,
C.; Kaiser, M.; Hamburger, M.; Adams, M. Molecules 2014, 19,
3523-3538.
c
OH
O
TIPSO
TIPSO
O
O
O
O
O
O
8. Related sesquiterpene lactone cynaropicrin has also
antitrypanosomal activity: (a) Zimmermann, S.; Kaiser, M.; Brun,
R.; Hamburger, M.; Adams, M. Planta Med. 2012, 78, 553-556.
(b) Usuki, T.; Sato, M.; Hara, S.; Yoshimoto, Y.; Kondo, R.;
Zimmermann, S.; Kaiser, M.; Brun, R.; Hamburger, M.; Adams,
M. Bioorg. Med. Chem. Lett. 2014, 24, 794-798.
2
16
O
d
O
HO
HO
O
OH
O
semi-synthetic cnicin (1')
9. (a) WHO Trypanosomiasis, human African (sleeping sickness)
on October 7, 2016). (b) Brun, R.; Blum, J.; Chappuis, F.; Burri, C.
Lancet 2012, 375, 148-159.
Scheme 4. Synthesis of semi-synthetic cnicin (1’). Reagents and
conditions: (a) 0.1 N Na2CO3 aq, dioxane/H2O (2:1), rt, 16 h, 51%;
(b) TIPSCl, imidazole, DMAP, CH2Cl2, 0 °C, 2 h, 63%. (c) EDC,
DMAP, CH2Cl2, rt, 24 h, 10%; (d) 1N HCl, CH2Cl2, rt, 28 h, 33%.
10. Checchi, F.; Filipe, J. A. N.; Haydon, D. T.; Chandramohan, D.;
Chappuis, F. BMC Infect. Dis 2008, 8, 16.
11. Blum, J.; Nkunku, S.; Burri, C. Trop. Med. Int. Health 2001, 6,
390-400.
12. Cren, S.; Wilson, C.; Thomas, N. R. Org. Lett. 2005, 7, 3521-3523.
13. Gautam, D.; Rao, B. V. Tetrahedron Lett. 2010, 51, 4199-4201.
14. Cho, B. H.; Kim, J. H.; Jeon, H. B.; Kim, K. S. Tetrahedron 2005,
61, 4341-4346.
15. Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem.
Soc. 2006, 128, 8412-8413.
Segments for semi-synthesis of 1 were prepared successfully.
Esterification of TIPS-protected salonitenolide derivative 2 and
the
synthetic
side
chain
3
using
1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide hydrochloride (EDC) and
N,N-dimethyl-4-aminopyridine (DMAP) was conducted at room
temperature for 24 h to afford 16 in 10% yield. The low yield
was probably due to an unexpected side reaction and/or steric
hindrance around C8. Removal of TIPS and acetonide protection
by 1 N HCl at room temperature for 28 h afforded semi-synthetic
cnicin 1’ in 33% yield. The optical rotation of 1’ {[α]D20 +159.9 (c
0.1, MeOH)} was good agreement with that of the isolated
natural product 1 ([α]D20 +169.6 (c 0.1, MeOH)).
16. (a) Kraus, G. A.; Roth, B. J. Org. Chem. 1980, 45, 4825-4830. (b)
Bal, B. S.; Childers Jr., W. E.; Pinnick, H. W. Tetrahedron 1981,
37, 2091-2096.
17. Tanaka, A.; Yamashita, K. Agric. Biol. Chem. 1980, 44, 199-202.
18. Adams, M.; Zimmermann, S.; Kaiser, M.; Brun, R.; Hamburger,
M. Nat. Prod. Commun. 2009, 4, 1377-1381.
19. Suchý, M.; Samek, Z.; Herout, V.; Šorm, F. Chem. Commun.
1967, 32, 2016-2019.
20. Sergio, R.; Antonella, M.; Rosa, A. R.; Maurizio, B. Eur. J. Org.
Chem. 2003, 14, 2690-2694.
21. Korte, F.; Beckmann, G. Die Naturwissenschaften 1958, 45, 390.
3. Conclusion
Supplementary Material
In summary, the protected side chain of antitrypanosomal
cnicin 1 was prepared via two routes starting from L-ascorbic
acid 5. In the initial route, synthesis of 3 was achieved in nine
steps in 12% overall yield. Subsequently, a more effective
synthesis eliminating placement of an unnecessary protecting
group was developed. The synthesis involved PCC oxidation and
Wittig reaction and yielded 3 in 16% overall yield in five steps.
Finally, esterification of synthetic side chain 3 and TIPS-
protected salonitenolide derivative 2 was conducted to achieve
Experimental procedures, NMR spectra. Supplementary data
associated with this article can be found in the online version, at
Click here to remove instruction text...