Organometallics
Article
132, 11045−11057. (b) Lysenko, S.; Haberlag, B.; Daniliuc, C. G.;
Jones, P. G.; Tamm, M. Efficient Catalytic Alkyne Metathesis with a
Tri(tert-butoxy)silanolate-Supported Tungsten Benzylidyne Complex.
ChemCatChem 2011, 3, 115−118. (c) Haberlag, B.; Freytag, M.;
Jones, P. G.; Tamm, M. Tungsten and Molybdenum 2,4,6-
Trimethylbenzylidyne Complexes as Robust Pre-Catalysts for Alkyne
Metathesis. Adv. Synth. Catal. 2014, 356, 1255−1265. (d) Estes, D.
P.; Gordon, C. P.; Fedorov, A.; Liao, W.-C.; Ehrhorn, H.; Bittner, C.;
Zier, M. L.; Bockfeld, D.; Chan, K. W.; Eisenstein, O.; Raynaud, C.;
tungsten-tungsten triple bonds with acetylenes and nitriles to give
alkylidyne and nitrido complexes. J. Am. Chem. Soc. 1982, 104, 4291−
4293. (c) Wengrovius, J. H.; Sancho, J.; Schrock, R. R. Metathesis of
acetylenes by tungsten(VI)-alkylidyne complexes. J. Am. Chem. Soc.
1981, 103, 3932−3934. (d) Listemann, M. L.; Schrock, R. R. Multiple
metal carbon bonds. 35. A general route to tri-tert-butoxytungsten
alkylidyne complexes. Scission of acetylenes by ditungsten hexa-tert-
butoxide. Organometallics 1985, 4, 74−83. (e) For a recent example,
̈
see Ehrhorn, H.; Schlosser, J.; Bockfeld, D.; Tamm, M. Efficient
́
Tamm, M.; Coperet, C. Molecular and Silica-Supported Molybdenum
catalytic alkyne metathesis with a fluoroalkoxy-supported ditungsten-
(III) complex. Beilstein J. Org. Chem. 2018, 14, 2425−2434.
(11) (a) Schrock, R. R.; Clark, D. N.; Sancho, J.; Wengrovius, J. H.;
Rocklage, S. M.; Pedersen, S. F. Tungsten(VI) neopentylidyne
complexes. Organometallics 1982, 1, 1645−1651. (b) Schrock, R. R.;
Sancho, J.; Pederson, S. F.; Virgil, S. C.; Grubbs, R. H. 2,2-
Dimethylpropylidyne Tungsten(VI) Complexes and Precursors for
their Syntheses. Inorganic Syntheses 2007, 26, 44−51.
(12) (a) Mayr, A.; McDermott, G. A. Oxidative transformation of
monobromotetracarbonyl(alkylidyne) complexes of molybdenum and
tungsten into tribromo(alkylidyne) complexes. J. Am. Chem. Soc.
1986, 108, 548−549. (b) McDermott, G. A.; Dorries, A. M.; Mayr, A.
Synthesis of carbyne complexes of chromium, molybdenum, and
tungsten by formal oxide abstraction from acyl ligands. Organo-
metallics 1987, 6, 925−931.
Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics
on Activity Revealed by Kinetics, Solid-State NMR and Chemical
Shift Analysis. J. Am. Chem. Soc. 2017, 139, 17597−17607.
(7) (a) Jyothish, K.; Zhang, W. Introducing A Podand Motif to
Alkyne Metathesis Catalyst Design: A Highly Active Multidentate
Molybdenum(VI) Catalyst that Resists Alkyne Polymerization. Angew.
Chem., Int. Ed. 2011, 50, 3435−3438. (b) Paley, D. W.; Sedbrook, D.
F.; Decatur, J.; Fischer, F. R.; Steigerwald, M. L.; Nuckolls, C.
Alcohol-Promoted Ring-Opening Alkyne Metathesis Polymerization.
Angew. Chem., Int. Ed. 2013, 52, 4591−4594. (c) VenkatRamani, S.;
Huff, N. B.; Jan, M. T.; Ghiviriga, I.; Abboud, K. A.; Veige, A. S. New
Alkylidyne Complexes Featuring a Flexible Trianionic ONO3−
Pincer-Type Ligand: Inorganic Enamine Effect versus Sterics in
Electrophilic Additions. Organometallics 2015, 34, 2841−2848.
(d) Schaubach, S.; Gebauer, K.; Ungeheuer, F.; Hoffmeister, L.; Ilg,
(13) von Kugelgen, S.; Sifri, R.; Bellone, D. E.; Fischer, F. R.
Regioselective Carbyne Transfer to Ring-Opening Alkyne Metathesis
Initiators Gives Access to Telechelic Polymers. J. Am. Chem. Soc.
2017, 139, 7577−7585.
M. K.; Wirtz, C.; Furstner, A. A Two-Component Alkyne Metathesis
̈
Catalyst System with an Improved Substrate Scope and Functional
Group Tolerance: Development and Applications to Natural Product
Synthesis. Chem. - Eur. J. 2016, 22, 8494−8507.
(14) Bukhryakov, K. V.; Schrock, R. R.; Hoveyda, A. H.; Tsay, C.;
(8) (a) Zhang, W.; Kraft, S.; Moore, J. S. A reductive recycle strategy
for the facile synthesis of molybdenum(VI) alkylidyne catalysts for
alkyne metathesis. Chem. Commun. 2003, 832−833. (b) Zhang, W.;
Kraft, S.; Moore, J. S. Highly Active Trialkoxymolybdenum(VI)
Alkylidyne Catalysts Synthesized by a Reductive Recycle Strategy. J.
Am. Chem. Soc. 2004, 126, 329−335. (c) Zhang, W.; Moore, J. S.
Arylene Ethynylene Macrocycles Prepared by Precipitation-Driven
Alkyne Metathesis. J. Am. Chem. Soc. 2004, 126, 12796. (d) Zhang,
W.; Brombosz, S. M.; Mendoza, J. L.; Moore, J. S. A High-Yield, One-
Step Synthesis of o-Phenylene Ethynylene Cyclic Trimer via
Precipitation-Driven Alkyne Metathesis. J. Org. Chem. 2005, 70,
10198−10201. (e) Zhang, W.; Moore, J. S. Reaction Pathways
Leading to Arylene Ethynylene Macrocycles via Alkyne Metathesis. J.
Am. Chem. Soc. 2005, 127, 11863−11870. (f) Weissman, H.; Plunkett,
K. N.; Moore, J. S. A Highly Active, Heterogeneous Catalyst for
Alkyne Metathesis. Angew. Chem., Int. Ed. 2006, 45, 585−588.
(9) (a) Beer, S.; Brandhorst, K.; Grunenberg, J.; Hrib, C. G.; Jones,
P. G.; Tamm, M. Preparation of Cyclophanes by Room-Temperature
Ring-Closing Alkyne Metathesis with Imidazolin-2-iminato Tungsten
Alkylidyne Complexes. Org. Lett. 2008, 10, 981−984. (b) Beer, S.;
Brandhorst, K.; Hrib, C. G.; Wu, X.; Haberlag, B.; Grunenberg, J.;
Jones, P. G.; Tamm, M. Experimental and Theoretical Investigations
of Catalytic Alkyne Cross-Metathesis with Imidazolin-2-iminato
Tungsten Alkylidyne Complexes. Organometallics 2009, 28, 1534−
1545. (c) Haberlag, B.; Wu, X.; Brandhorst, K.; Grunenberg, J.;
Daniliuc, C. G.; Jones, P. G.; Tamm, M. Preparation of Imidazolin-2-
iminato Molybdenum and Tungsten Benzylidyne Complexes: A New
Pathway to Highly Active Alkyne Metathesis Catalysts. Chem. - Eur. J.
2010, 16, 8868−8877. (d) Wu, X.; Daniliuc, C. G.; Hrib, C. G.;
Tamm, M. Phosphoraneiminato tungsten alkylidyne complexes as
highly efficient alkyne metathesis catalysts. J. Organomet. Chem. 2011,
696, 4147−4151. (e) Lysenko, S.; Daniliuc, C. G.; Jones, P. G.;
Tamm, M. Tungsten alkylidyne complexes with ancillary imidazolin-
2-iminato and imidazolidin-2-iminato ligands and their use in catalytic
alkyne metathesis. J. Organomet. Chem. 2013, 744, 7−14.
Muller, P. Syntheses of Molybdenum Oxo Alkylidene Complexes
̈
through Addition of Water to an Alkylidyne Complex. J. Am. Chem.
Soc. 2018, 140, 2797−2800.
(15) Furstner, A. In Modern Alkyne Chemistry: Catalytic and Atom-
̈
Economic Transformations; Trost, B. M., Li, C.-J., Eds.; Wiley-VCH:
Weinheim, Germany, 2015; pp 69−112.
(16) (a) Lysenko, S.; Volbeda, J.; Jones, P. G.; Tamm, M. Catalytic
Metathesis of Conjugated Diynes. Angew. Chem., Int. Ed. 2012, 51,
6757−6761. (b) Li, S. T.; Schnabel, T.; Lysenko, S.; Brandhorst, K.;
Tamm, M. Synthesis of unsymmetrical 1,3-diynes via alkyne cross-
metathesis. Chem. Commun. 2013, 49, 7189−7191. (c) Schnabel, T.
M.; Melcher, D.; Brandhorst, K.; Bockfeld, D.; Tamm, M. Unraveling
the Mechanism of 1,3-Diyne Cross-Metathesis Catalyzed by
Silanolate-Supported Tungsten Alkylidyne Complexes. Chem. - Eur.
J. 2018, 24, 9022−9032.
(17) For example, see Jyothish, K.; Wang, Q.; Zhang, W. Highly
Active Multidentate Alkyne Metathesis Catalysts: Ligand-Activity
Relationship and Their Applications in Efficient Synthesis of
Porphyrin-Based Aryleneethynylene Polymers. Adv. Synth. Catal.
2012, 354, 2073−2078 and refs 18 and 19 .
(18) (a) Yang, H.; Jin, Y.; Du, Y.; Zhang, W. Application of alkyne
metathesis in polymer synthesis. J. Mater. Chem. A 2014, 2, 5986−
5993. (b) Ortiz, M.; Yu, C.; Jin, Y.; Zhang, W. Poly-
(aryleneethynylene)s: Properties, Applications and Synthesis Through
Alkyne Metathesis. Top. Curr. Chem. 2017, 375, 69.
(19) (a) Wang, Q.; Zhang, C.; Noll, B. C.; Long, H.; Jin, Y.; Zhang,
W. A Tetrameric Cage with D2h Symmetry through Alkyne
Metathesis. Angew. Chem., Int. Ed. 2014, 53, 10663−10667.
(b) Wang, Q.; Yu, C.; Long, H.; Du, Y.; Jin, Y.; Zhang, W.
Solution-Phase Dynamic Assembly of Permanently Interlocked
Aryleneethynylene Cages through Alkyne Metathesis. Angew. Chem.,
Int. Ed. 2015, 54, 7550−7554. (c) Du, Y.; Yang, H.; Whiteley, J. M.;
Wan, S.; Jin, Y.; Lee, S.-H.; Zhang, W. Ionic Covalent Organic
Frameworks with Spiroborate Linkage. Angew. Chem., Int. Ed. 2016,
55, 1737−1741. (d) Wang, Q.; Yu, C.; Zhang, C.; Long, H.;
Azarnoush, S.; Jin, Y.; Zhang, W. Dynamic covalent synthesis of
aryleneethynylene cages through alkyne metathesis: dimer, tetramer,
or interlocked complex? Chem. Sci. 2016, 7, 3370−3376. (e) Yang, H.;
Zhu, Y.; Du, Y.; Tan, D.; Jin, Y.; Zhang, W. Aromatic-rich
(10) (a) Chisholm, M. H.; Cotton, F. A.; Extine, M.; Stults, B. R.
The tungsten-tungsten triple bond. 1. Preparation, properties, and
structural characterization of hexakis(dimethylamido)ditungsten(III)
and some homologs. J. Am. Chem. Soc. 1976, 98, 4477−4485.
(b) Schrock, R. R.; Listemann, M. L.; Sturgeoff, L. G. Metathesis of
P
Organometallics XXXX, XXX, XXX−XXX