3
Table 4. One-pot reactions with heteroaromatic amines and aldehydesa
3352–3365; (c) Wender, P.; Verma, V. A.; Paxton, T. J.; Pillow, T. H.
Acc. Chem. Res. 2008, 41, 40–49.
12. Review on one-pot synthesis: Vaxelaire, C.; Winter, P.; Christmann, M.
Angew. Chem. Int. Ed. 2011, 50, 3605–3607.
13. Zhang, W. Green Chem. 2009, 11, 911–920.
14. Other examples of one-pot synthesis from our lab: (a) Lu, Q.; Song, G.;
Jasinski, J. P.; Keeley, A. C.; Zhang, W. Green Chem. 2012, 14, 3010–
3012. (b) Zhang, W.; Lu, Y.; Geib, S. J. Org. Lett. 2005, 7, 2269–2272.
(c) Kadam, A.; Bellinger, S.; Zhang, W. Green Process. Synth. 2013, 2,
491–497.
15. Yi, W.-B.; Huang, X.; Cai, C.; Zhang, W. Green Chem. 2012, 14, 3185–
3189.
16. General procedure for the one-pot synthesis: 1,3-dicarbonyl compound 1
(0.5 mmol) and SelectfluorTM (from Sigma, 0.5 mmol) in 1.0 mL of
CH3CN was heated under Biotage Initiator microwave reactor at 90°C for
30 min. Then a benzaldehyde (0.5 mmol), an aniline (0.5 mmol) and
Zn(NO3)2 (20 mol%) were carefully added to the fluorinated reaction
mixture at room temp. The mixture was then heated under microwave at
120 °C for another 30 min. After an aqueous work up, the crude product
was purified by flash column chromatography on silica gel to give
fluorinated Mannich product 3.
a
Reactions were carried out using 0.5 mmol each of 1,3-dicarbonyl
compounds and SelectfluorTM, followed by addition of 0.5 mmol each of
benzaldehydes and aniline, and 20 mol% of Zn(NO3)2.
b
Isolated yield, diastereomeric ratio in parenthesis was determined by 1H
NMR.
Acknowledgments
We thank the UMass Boston Healey Grant for their support of
this work.
Supplementary data
Supplementary data associated with this article can be found in
the online version at
References and notes
1. Banks, R. E.; Smart, B. E.; Tatlow J. C. Organofluorine Chemistry:
Principles and Commercial Applications, Springer: New York, 1994.
2. Fluorine in Medicinal Chemistry and Chemical Biology; Ojima, I. Ed.;
Wiley-Blackwell, Chichester, 2009.
3. Jeschke, P. ChemBioChem. 2004, 5, 570–589.
4. Austin, J. F.; Kim; S.-G. Sinz, C. J.; Xiao, W.J.; Macmillan, D. W. C.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5482-5487.
5. Sarantakis, D.; Bicksler, J. J.; Wu, J. C. US 20060014826, 2006.
6. Abad, A.; Agullo, C.; Cunat, A. C.; Gonzalez-Coloma, A.; Pardo, D.
Eur. J. Org. Chem. 2010, 2182–2198.
7. Phan, L. T.; Clark, R. F.; Rupp, M.; Or, Y. S.; Chu, D. T. W.; Ma, Z.
Org. Lett. 2000, 2, 2951–2954.
8. Examples of asymmetric Michael additions of α-fluorinated 1,3-
dicarbonyl compounds: (a) Huang, X.; Yi, W.-B.; Ahad, D.; Zhang, W.
Tetrahedron Lett. 2013, 54, 6064–6066; (b)Yi, W.-B.; Zhang, Z.; Huang,
X.; Tanner, A.; Cai, C.; Zhang, W. RSC Advances 2013, 3, 18267–18270,
and the references cited therein; (c) Jiang, Z.; Pan, Y.; Zhao, Y.; Ma, T.;
Lee, R.; Yang, Y.; Huang, K.-W.; Wong, M. W.; Tan, C.-H. Angew.
Chem. Int. Ed. 2009, 48, 3627–3631; (d) Li, F.; Nie, J.; Wu, J.-W.;
Zheng, Y.; Ma, J.-A. J. Org. Chem. 2012, 77, 2398−2406.
9. Examples of asymmetric Mannich reactions of α-fluorinated 1,3-
dicarbonyl compounds: (a) Han, X.; Kwiatkowski, J.; Xue, F.; Huang, K.
W.; Lu, Y. Angew. Chem. Int. Ed. 2009, 48, 7604–7607; (b) Pan, Y.;
Zhao, Y.; Ma, T. Yang, Y.; Liu, H.; Jiang, Z.; Tan, C.-H. Chem. Eur. J.
2010, 16, 779–782; (c) Lee, J. H.; Kim, D. Y. Synthesis 2010, 1860-1864;
(d) Kang, Y. K.; Yoon, S. J.; Kim, D. Y. Bull. Korean Chem. Soc. 2011,
32, 1195–1200; (e) Yoon, S. J.; Kang, Y. K.; Kim, D. Y. Synlett 2011,
420–424; (f) Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 2356–
2358;
10. Yi, W.-B.; Huang, X.; Zhang, Z.; Zhu, D.-Z.; Cai, C.; Zhang, W.
Beilstein J. Org. Chem. 2012, 8, 1233–1240, and the references cited
therein.
11. Reviews on atom- and step-economy synthesis: (a) Trost, B. M. Acc.
Chem. Res. 2002, 35, 695–705; (b) Sheldon, R. Chem. Commun. 2008,