Page 5 of 7
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
Experimental details, synthetic and preparation details, cell
culture, calculations, single crystal data and others (PDF)
D.; Lu, F.; Wang, J.; Hu, W.; Cao, X. M.; Ma, X.; Tian, H. Amorphous
metal-free room-temperature phosphorescent small molecules with
multicolor photoluminescence via a host-guest and dual-emission
strategy. J. Am. Chem. Soc. 2018, 140, 1916. (c) Ventura, B.; Bertocco,
A.; Braga, D.; Catalano, L.; d’Agostino, S.; Grepioni, F.; Taddei, P.
Luminescence properties of 1,8-naphthalimide derivatives in
solution, in their crystals, and in co-crystals: toward room-
temperature phosphorescence from organic materials. J. Phys. Chem.
C 2014, 118, 18646. (d) Kuila, S.; Rao, K. V.; Garain, S.; Samanta, P.;
Das, S.; Pati, S. K. George, S. J. Aqueous phase phosphorescence:
ambient triplet harvesting of purely organic phosphors via
supramolecular scaffolding. Angew. Chem. Int. Ed. 2018, 57, 17115. (e)
Ono, T.; Taema, A.; Goto, A.; Hisaeda, Y. Switching of monomer
fluorescence, charge-transfer fluorescence, and room-temperature
AUTHOR INFORMATION
Notes
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
The authors declare no competing financial interests.
ACKNOWLEDGMENT
Financial support from the National Natural Science
Foundation of China (21871280 and 21525206), the Ministry of
Science and Technology of China (2017YFA0206903), the
Strategic Priority Research Program of the Chinese Academy
of Sciences (XDB17000000), the Key Research Program of
Frontier Sciences of the Chinese Academy of Sciences
phosphorescence induced by aromatic guest inclusion in a
supramolecular host. Chem. Eur. J. 2018, 24, 17487.
(6) (a) Zhang, G.; Palmer, G. M.; Dewhirst, M. W.; Fraser, C. L. A
dual-emissive-materials design concept enables tumour hypoxia
imaging. Nat. Mater. 2009, 8, 747. (b) Chen, X.; Xu, C.; Wang, T.;
Zhou, C.; Du, J.; Wang, Z.; Xu, H.; Xie, T.; Bi, G.; Jiang, J.; Zhang, X.;
Demas, J. N.; Trindle, C. O.; Luo, Y.; Zhang, G. Versatile room-
temperature-phosphorescent materials prepared from N-substituted
naphthalimides: emission enhancement and chemical conjugation.
Angew. Chem. Int. Ed. 2016, 55, 9872. (c) Kwon, M. S.; Yu, Y.;
Coburn, C.; Phillips, A. W.; Chung, K.; Shanker, A.; Jung, J.; Kim, G.;
Pipe, K.; Forrest, S. R.; Youk, J. H.; Gierschner, J.; Kim, J. Suppressing
(
QYZDY-SSW-JSC029), K. C. Wong Education Foundation
are gratefully acknowledged. The authors thank Dr. Ye Tian
TIPC) for providing HeLa cells, Prof. Yong Chen (TIPC) for
(
his helpful discussions.
molecular
phosphorescence of metal-free organic materials. Nat. Commun.
015, 6, 8947. (d) Ma, X.; Xu, C.; Wang, J.; Tian, H. Amorphous pure
motions
for
enhanced
room-temperature
REFERENCES
2
(
1) (a) Xu, S.; Chen, R.; Zheng, C.; Huang, W. Excited state
organic polymers for heavy-atom-free efficient room-temperature
phosphorescence emission. Angew. Chem. Int. Ed. 2018, 57, 10854. (e)
Tao, S.; Lu, S.; Geng, Y.; Zhu, S.; Redfern, S. A. T.; Song, Y.; Feng, T.;
Xu, W.; Yang, B. Design of metal-free polymer carbon dots: a new
class of room-temperature phosphorescent materials. Angew. Chem.
Int. Ed. 2018, 57, 2393. (f) Ogoshi T, T. H., Kakuta T, Yamagishi T-A,
Taema A, Ono T, Sugimoto M, Mizuno, M. Ultralong room-
temperature phosphorescence from amorphous polymer poly
(styrene sulfonic acid) in air in the dry solid state Adv. Funct. Mater.
modulation for organic afterglow: materials and applications. Adv.
Mater. 2016, 28, 9920. (b) Baroncini, M.; Bergamini, G.; Ceroni, P.
Chem.
Commun.
Rigidification
or
interaction-induced
phosphorescence of organic molecules. 2017, 53, 2081. (c) Forni, A.;
Lucenti, E.; Botta, C.; Cariati, E. Metal free room temperature
phosphorescence from molecular self-interactions in the solid state.
J. Mater. Chem. C 2018, 6, 4603. (d) Mukherjee, S.; Thilagar, P.
Recent advances in purely organic phosphorescent materials. Chem.
Commun. 2015, 51, 10988. (e) Chen, P.-Z.; Chen, Y.-Z.; Tung ,C.-H.;
Yang, Q.-Z. A simple strategy to construct amorphous metal-Free
room temperature phosphorescent and multi-color materials.
ChemPhysChem 2018, 19, 2131.
2
018, 28, 1707369. (g) Jiang, K.; Zhang, L.; Lu, J.; Xu, C.; Cai, C.; Lin,
H. Triple-mode emission of carbon dots: applications for advanced
anti-counterfeiting. Angew. Chem. Int. Ed. 2016, 55, 7231. (h). Wu, H.;
Chi, W.; Chen, Z.; Liu, G.; Gu, L.; Bindra, A. K.; Yang, G.; Liu, X.;
Zhao, Y. Achieving amorphous ultralong room temperature
phosphorescence by coassembling planar small organic molecules
with polyvinyl alcohol. Adv. Funct. Mater. 2018, 1807243.
(
2) Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Principles of
Molecular Photochemistry: An Introduction; University Science Books:
Mill Valley, CA, 2009.
(
3) (a) Yang, Z.; Mao, Z.; Zhang, X.; Ou, D.; Mu, Y.; Zhang, Y.;
(
7) Yang, X.; Yan, D. Long-afterglow metal–organic frameworks:
Zhao, C.; Liu, S.; Chi, Z.; Xu, J.; Wu, Y.-C.; Lu, P.-Y.; Lien, A.; Bryce,
M. R. Intermolecular electronic coupling of organic units for efficient
persistent room-temperature phosphorescence. Angew. Chem. Int.
Ed. 2016, 55, 2181. (b) Mao, Z.; Yang, Z.; Mu, Y.; Zhang, Y.; Wang, Y.
F.; Chi, Z.; Lo, C. C.; Liu, S.; Lien, A.; Xu, J. Linearly tunable emission
colors obtained from a fluorescent-phosphorescent dual-emission
compound by mechanical stimuli. Angew. Chem. Int. Ed. 2015, 54,
reversible guest-induced phosphorescence tunability. Chem. Sci.
2
016, 7, 4519.
(8) (a) Yuan, W. Z.; Shen, X. Y.; Zhao, H.; Lam, J. W. Y.; Tang, L.;
Lu, P.; Wang, C.; Liu, Y.; Wang, Z.; Zheng, Q.; Sun, J. Z.; Ma, Y.;
Tang, B. Z. Crystallization-induced phosphorescence of pure organic
luminogens at room temperature. J. Phys. Chem. C. 2010, 114, 6090.
(
b) Bolton, O.; Lee, K.; Kim, H. J.; Lin, K. Y.; Kim, J. Activating
6270.
efficient phosphorescence from purely organic materials by crystal
design. Nat. Chem. 2011, 3, 205. (c) Yang, J.; Zhen, X.; Wang, B.; Gao,
X.; Ren, Z.; Wang, J.; Xie, Y.; Li, J.; Peng, Q.; Pu, K.; Li, Z. The
influence of the molecular packing on the room temperature
phosphorescence of purely organic luminogens. Nat. Commun. 2018,
9, 840. (d) Wang, J.; Gu, X.; Ma, H.; Peng, Q.; Huang, X.; Zheng, X.;
Sung, S. H. P.; Shan, G.; Lam, J. W. Y.; Shuai, Z.; Tang, B. Z. A facile
strategy for realizing room temperature phosphorescence and single
molecule white light emission. Nat. Commun. 2018, 9, 2963. (e)
Wang, J.; Wang, C.; Gong, Y.; Liao, Q.; Han, M.; Jiang, T.; Dang, Q.;
Li, Y.; Li, Q.; Li, Z. Bromine-substituted fluorene: molecular
structure, Br-Br interactions, room-temperature phosphorescence,
and tricolor triboluminescence. Angew. Chem. Int. Ed. 2018, 57, 16821.
(
4) (a) Xue, P.; Sun, J.; Chen, P.; Wang, P.; Yao, B.; Gong, P.;
Zhang, Z.; Lu, R. Luminescence switching of a persistent room-
temperature phosphorescent pure organic molecule in response to
external stimuli. Chem. Commun. 2015, 51, 10381. (b) Lee, D.; Ma, X.;
Jung, J.; Jeong, E. J.; Hashemi, H.; Bregman, A.; Kieffer, J.; Kim, J. The
effects of extended conjugation length of purely organic phosphors
on their phosphorescence emission properties. Phys. Chem. Chem.
Phys. 2015, 17, 19096. (c) Zhao, W.; He, Z.; Lam, Jacky, W. Y.; Peng,
Q.; Ma, H.; Shuai, Z.; Bai, G.; Hao, J.; Tang, B. Z. Rational molecular
design for achieving persistent and efficient pure organic room-
temperature phosphorescence. Chem. 2016, 1, 592.
(
5) (a) Hirata, S.; Totani, K.; Zhang, J.; Yamashita, T.; Kaji, H.;
Marder, S. R.; Watanabe, T.; Adachi, C. Efficient persistent room
temperature phosphorescence in organic amorphous materials
under ambient conditions. Adv. Funct. Mater. 2013, 23, 3386. (b) Li,
(
f) Wei, J.; Liang, B.; Duan, R.; Cheng, Z.; Li, C.; Zhou, T.; Yi, Y.;
Wang, Y. Induction of strong long-lived room-temperature
phosphorescence of N-phenyl-2-naphthylamine molecules by
ACS Paragon Plus Environment