Nucleic Acids Research, 2019 9
18. Gold,L., Ayers,D., Bertino,J., Bock,C., Bock,A., Brody,E.N.,
Carter,J., Dalby,A.B., Eaton,B.E., Fitzwater,T. et al. (2010)
Aptamer-based multiplexed proteomic technology for biomarker
discovery. PLoS One, 5, e15004.
19. Cox,J. and Mann,M. (2011) Quantitative, high-resolution proteomics
for data-driven systems biology. Annu. Rev. Biochem., 80, 273–299.
20. Gelinas,A.D., Davies,D.R., Edwards,T.E., Rohloff,J.C., Carter,J.D.,
Zhang,C., Gupta,S., Ishikawa,Y., Hirota,M., Nakaishi,Y. et al. (2014)
Crystal structure of interleukin-6 in complex with a modified nucleic
acid ligand. J. Biol. Chem., 289, 8720–8734.
21. Davies,D.R., Gelinas,A.D., Zhang,C., Rohloff,J.C., Carter,J.D.,
O’Connell,D., Waugh,S.M., Wolk,S.K., Mayfield,W.S., Burgin,A.B.
et al. (2012) Unique motifs and hydrophobic interactions shape the
binding of modified DNA ligands to protein targets. PNAS, 109,
19971–19976.
22. Gupta,S., Hirota,M., Waugh,S.M., Murakami,I., Suzuki,T.,
Muraguchi,M., Shibamori,M., Ishikawa,Y., Jarvis,T.C., Carter,J.D.
et al. (2014) Chemically modified DNA aptamers bind interleukin-6
with high affinity and inhibit signaling by blocking its interaction
with interleukin-6 receptor. J. Biol. Chem., 289, 8706–8719.
23. Hopfield,J.J. (1974) Kinetic Proofreading: A new mechanism for
reducing errors in biosynthetic processes requiring high specificity.
Proc. Natl. Acad. Sci. U.S.A., 71, 4135–4139.
33. Ostrowski,T., Wroblowski,B., Busson,R., Rozenski,J., De Clercq,E.,
Bennett,M.S., Champness,J.N., Summers,W.C., Sanderson,M.R. and
Herdewijn,P. (1998) 5-Substituted pyrimidines with a 1,5-anhydro-2,
3-dideoxy-D-arabino-hexitol moiety at N-1: synthesis, antiviral
activity, conformational analysis, and interaction with viral thymidine
kinase. J. Med. Chem., 41, 4343–4353.
34. Ren,W. and Yamane,M. (2010) Mo(CO)(6)-mediated carbamoylation
of aryl halides. J. Org. Chem., 75, 8410–8415.
35. Wannberg,J. and Larhed,M. (2003) Increasing rates and scope of
reactions: sluggish amines in microwave-heated aminocarbonylation
reactions under air. J. Org. Chem., 68, 5750–5753.
36. Ro¨sch,H., Fro¨llich,A., Ortigao,J.F.R., Montenarh,M. and Seliger,H.
(1990) Patent US US5750669A.
37. Hipolito,C.J., Hollenstein,M., Lam,C.H. and Perrin,D.M. (2011)
Protein-inspired modified DNAzymes: dramatic effects of shortening
side-chain length of 8-imidazolyl modified deoxyadenosines in
selecting RNaseA mimicking DNAzymes. Org. Biomol. Chem., 9,
2266–2273.
38. Perrin,D.M., Garestier,T. and He´le`ne,C. (1999) Expanding the
catalytic repertoire of nucleic acid catalysts: simultaneous
incorporation of two modified deoxyribonucleoside triphosphates
bearing ammonium and imidazolyl functionalities. Nucleosides
Nucleotides, 18, 377–391.
24. Hathout,Y., Brody,E., Clemens,P.R., Cripe,L., DeLisle,R.K.,
Furlong,P., Gordish-Dressman,H., Hache,L., Henricson,E.,
Hoffman,E.P. et al. (2015) Large-scale serum protein biomarker
discovery in Duchenne muscular dystrophy. Proc. Natl. Acad. Sci.
U.S.A., 112, 7153–7158.
25. Rohloff,J.C., Gelinas,A.D., Jarvis,T.C., Ochsner,U.A., Schneider,D.J.,
Gold,L. and Janjic,N. (2014) Nucleic acid ligands with Protein-like
side Chains: Modified aptamers and their use as diagnostic and
therapeutic agents. Mol. Ther. Nucleic Acids, 3, e201.
26. Tarasow,T.M., Tarasow,S.L. and Eaton,B.E. (1997) RNA-catalysed
carbon-carbon bond formation. Nature, 389, 54–57.
27. Wiegand,T.W., Janssen,R.C. and Eaton,B.E. (1997) Selection of RNA
amide synthases. Chem. Biol., 4, 675–683.
28. Chen,Y., Wiesmann,C., Fuh,G., Li,B., Christinger,H.W., McKay,P.,
de Vos,A.M. and Lowman,H.B. (1999) Selection and analysis of an
optimized anti-VEGF antibody: crystal structure of an
affinity-matured Fab in complex with antigen. J. Mol. Biol., 293,
865–881.
29. Fellouse,F.A., Wiesmann,C. and Sidhu,S.S. (2004) Synthetic
antibodies from a four-amino-acid code: a dominant role for tyrosine
in antigen recognition. Proc. Natl. Acad. Sci. U.S.A., 101,
12467–12472.
39. Gourlain,T., Sidorov,A., Mignet,N., Thorpe,S.J., Lee,S.E.,
Grasby,J.A. and Williams,D.M. (2001) Enhancing the catalytic
repertoire of nucleic acids. II. Simultaneous incorporation of amino
and imidazolyl functionalities by two modified triphosphates during
PCR. Nucleic Acids Res., 29, 1898–1905.
40. Santoro,S.W., Joyce,G.F., Sakthivel,K., Gramatikova,S. and
Barbas,C.F. (2000) RNA cleavage by a DNA enzyme with extended
chemical functionality. J. Am. Chem. Soc., 122, 2433–2439.
41. Liu,C., Cozens,C., Jaziri,F., Rozenski,J., Marechal,A., Dumbre,S.,
Pezo,V., Marliere,P., Pinheiro,V.B., Groaz,E. et al. (2018)
Phosphonomethyl oligonucleotides as Backbone-Modified artificial
genetic polymers. J. Am. Chem. Soc., 140, 6690–6699.
42. Tsai,Y.C. and Johnson,K.A. (2006) A new paradigm for DNA
polymerase specificity. Biochemistry, 45, 9675–9687.
43. Estep,P.A. and Johnson,K.A. (2011) Effect of the Y955C mutation
on mitochondrial DNA polymerase nucleotide incorporation
efficiency and fidelity. Biochemistry, 50, 6376–6386.
44. Gardner,A.F., Joyce,C.M. and Jack,W.E. (2004) Comparative kinetics
of nucleotide analog incorporation by vent DNA polymerase. J. Biol.
Chem., 279, 11834–11842.
45. Schermerhorn,K.M. and Gardner,A.F. (2015) Pre-steady-state
kinetic analysis of a family D DNA polymerase from thermococcus
sp. 9 degrees N reveals mechanisms for archaeal genomic replication
and maintenance. J. Biol. Chem., 290, 21800–21810.
30. Johnson,K.A. (1992) 1 Transient-State kinetic analysis of enzyme
reaction pathways. 20, 1–61.
31. Johnson,K.A. (1995) Rapid quench kinetic analysis of polymerases,
adenosinetriphosphatases, and enzyme intermediates. Methods
Enzymol., 249, 38–61.
32. Abramov,M. and Herdewijn,P. (2007) Synthesis of altritol nucleoside
phosphoramidites for oligonucleotide synthesis. Curr. Protoc. Nucleic
Acid Chem., doi:10.1002/0471142700.nc0118s30.
46. Rohloff,J.C., Gelinas,A.D., Jarvis,T.C., Ochsner,U.A., Schneider,D.J.,
Gold,L. and Janjic,N. (2014) Nucleic acid ligands with Protein-like
side Chains: Modified aptamers and their use as diagnostic and
therapeutic agents. Mol. Ther. Nucleic Acids, 3, e201.
47. Cozens,C., Pinheiro,V.B., Vaisman,A., Woodgate,R. and Holliger,P.
(2012) A short adaptive path from DNA to RNA polymerases.
PNAS, 109, 8067–8072.