Langmuir
Page 10 of 13
7. Piepenbrock, M.-O. M.; Lloyd, G. O.; Clarke, N.; Steed, J. W., Metal-
28. Draper, E. R.; Adams, D. J., How should multicomponent
and Anion-Binding Supramolecular Gels. Chem. Rev. 2010, 110, 1960-
2004.
supramolecular gels be characterised? Chem. Soc. Rev. 2018, 47, 3395-
3405.
29. Cross, E. R.; Sproules, S.; Schweins, R.; Draper, E. R.; Adams, D. J.,
Controlled Tuning of the Properties in Optoelectronic Self-Sorted Gels. J.
Am. Chem. Soc. 2018, 140, 8667-8670.
30. Shigemitsu, H.; Fujisaku, T.; Tanaka, W.; Kubota, R.; Minami, S.;
Urayama, K.; Hamachi, I., An adaptive supramolecular hydrogel
comprising self-sorting double nanofibre networks. Nat. Nanotech. 2018,
13, 165-172.
31. Nanda, J.; Adhikari, B.; Basak, S.; Banerjee, A., Formation of Hybrid
Hydrogels Consisting of Tripeptide and Different Silver Nanoparticle-
Capped Ligands: Modulation of the Mechanical Strength of Gel Phase
Materials. J. Phys. Chem. B 2012, 116, 12235-12244.
32. Adhikari, B.; Nanda, J.; Banerjee, A., Pyrene-Containing Peptide-
Based Fluorescent Organogels: Inclusion of Graphene into the Organogel.
Chem. Eur. J. 2011, 17, 11488-11496.
33. Samanta, S. K.; Subrahmanyam, K. S.; Bhattacharya, S.; Rao, C. N.
R., Composites of Graphene and Other Nanocarbons with Organogelators
Assembled through Supramolecular Interactions. Chem. Eur. J. 2012, 18,
2890-2901.
34. Samanta, S. K.; Pal, A.; Bhattacharya, S.; Rao, C. N. R., Carbon
nanotube reinforced supramolecular gels with electrically conducting,
viscoelastic and near-infrared sensitive properties. J. Mater. Chem. 2010,
20, 6881-6890.
35. Wang, Q.; Mynar, J. L.; Yoshida, M.; Lee, E.; Lee, M.; Okuro, K.;
Kinbara, K.; Aida, T., High-water-content mouldable hydrogels by mixing
clay and a dendritic molecular binder. Nature 2010, 463, 339–343.
36. Kato, T.; Hirai, Y.; Nakaso, S.; Moriyama, M., Liquid-crystalline
physical gels. Chem. Soc. Rev. 2007, 36, 1857-1867.
37. Heeres, A.; van der Pol, C.; Stuart, M.; Friggeri, A.; Feringa, B. L.;
van Esch, J., Orthogonal Self-Assembly of Low Molecular Weight
Hydrogelators and Surfactants. J. Am. Chem. Soc. 2003, 125, 14252-
14253.
38. Brizard, A.; Stuart, M.; van Bommel, K.; Friggeri, A.; de Jong, M.;
van Esch, J., Preparation of Nanostructures by Orthogonal Self-Assembly
of Hydrogelators and Surfactants. Angew. Chem. Int. Ed. 2008, 47, 2063-
2066.
39. Cornwell, D. J.; Okesola, B. O.; Smith, D. K., Hybrid polymer and
low molecular weight gels - dynamic two-component soft materials with
both responsive and robust nanoscale networks. Soft Matter 2013, 9, 8730-
8736.
40. Cornwell, D. J.; Okesola, B. O.; Smith, D. K., Multidomain Hybrid
Hydrogels: Spatially Resolved Photopatterned Synthetic Nanomaterials
Combining Polymer and Low-Molecular-Weight Gelators. Angew. Chem.
Int. Ed. 2014, 53, 12461-12465.
41. Wang, J.; Wang, Z.; Gao, J.; Wang, L.; Yang, Z.; Kong, D.; Yang, Z.,
Incorporation of supramolecular hydrogels into agarose hydrogels-a
potential drug delivery carrier. J. Mater. Chem. 2009, 19, 7892-7896.
42. Kölbel, M.; Menger, F. M., Molecular Recognition among Structurally
Similar Components of a Self-Assembling Soft Material. Langmuir 2001,
17, 4490-4492.
43. Moffat, J. R.; Smith, D. K., Controlled self-sorting in the assembly of
'multi-gelator' gels. Chem. Commun. 2009, 316-318.
44. Draper, E. R.; Adams, D. J., Self-sorting shows its true colours. Nat.
Chem. 2016, 8, 737–738.
1
2
3
4
5
6
7
8
8. Yu, G.; Yan, X.; Han, C.; Huang, F., Characterization of
supramolecular gels. Chem. Soc. Rev. 2013, 42, 6697-6722.
9. Kumar, D. K.; Steed, J. W., Supramolecular gel phase crystallization:
orthogonal self-assembly under non-equilibrium conditions. Chem. Soc.
Rev. 2014, 43, 2080-2088.
10. Foster, J. A.; Damodaran, K. K.; Maurin, A.; Day, G. M.; Thompson,
H. P. G.; Cameron, G. J.; Bernal, J. C.; Steed, J. W., Pharmaceutical
polymorph control in a drug-mimetic supramolecular gel. Chem. Sci.
2017, 8, 78-84.
11. Terech, P.; Weiss, R. G., Low Molecular Mass Gelators of Organic
Liquids and the Properties of Their Gels. Chem. Rev. 1997, 97, 3133-
3160.
12. Skilling, K. J.; Citossi, F.; Bradshaw, T. D.; Ashford, M.; Kellam, B.;
Marlow, M., Insights into low molecular mass organic gelators: a focus on
drug delivery and tissue engineering applications. Soft Matter 2014, 10,
237-256.
13. Du, X.; Zhou, J.; Shi, J.; Xu, B., Supramolecular Hydrogelators and
Hydrogels: From Soft Matter to Molecular Biomaterials. Chem. Rev.
2015, 115, 13165-13307.
14. Babu, S. S.; Praveen, V. K.; Ajayaghosh, A., Functional π-Gelators
and Their Applications. Chem. Rev. 2014, 114, 1973-2129.
15. Worthington, P.; Pochan, D. J.; Langhans, S. A., Peptide Hydrogels –
Versatile Matrices for 3D Cell Culture in Cancer Medicine. Font Oncol.
2015, 5.
16. Truong, W. T.; Su, Y.; Meijer, J. T.; Thordarson, P.; Braet, F., Self-
Assembled Gels for Biomedical Applications. Chem. Asian J. 2011, 6, 30-
42.
17. Buerkle, L. E.; Rowan, S. J., Supramolecular gels formed from multi-
component low molecular weight species. Chem. Soc. Rev. 2012, 41,
6089-6102.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
18. Raeburn, J.; Adams, D. J., Multicomponent low molecular weight
gelators. Chem. Commun. 2015, 51, 5170-5180.
19. Edwards, W.; Smith, D. K., Enantioselective Component Selection in
Multicomponent Supramolecular Gels. J. Am. Chem. Soc. 2014, 136,
1116-1124.
20. Smith, M. M.; Smith, D. K., Self-sorting multi-gelator gels-mixing and
ageing effects in thermally addressable supramolecular soft nanomaterials.
Soft Matter 2011, 7, 4856-4860.
21. Fichman, G.; Guterman, T.; Adler-Abramovich, L.; Gazit, E.,
Synergetic functional properties of two-component single amino acid-
based hydrogels. CrystEngComm 2015, 17, 8105-8112.
22. Singh, N.; Maity, C.; Zhang, K.; Angulo-Pachón, C. A.; van Esch, J.
H.; Eelkema, R.; Escuder, B., Synthesis of
a Double-Network
Supramolecular Hydrogel by Having One Network Catalyse the
Formation of the Second. Chem. Eur. J. 2017, 23, 2018-2021.
23. Singh, N.; Zhang, K.; Angulo-Pachon, C. A.; Mendes, E.; van Esch, J.
H.; Escuder, B., Tandem reactions in self-sorted catalytic molecular
hydrogels. Chem. Sci. 2016, 7, 5568-5572.
24. Sandeep, A.; Praveen, V. K.; Kartha, K. K.; Karunakaran, V.;
Ajayaghosh, A., Supercoiled fibres of self-sorted donor-acceptor stacks: a
turn-off/turn-on platform for sensing volatile aromatic compounds. Chem.
Sci. 2016, 7, 4460-4467.
25. Safont-Sempere, M. M.; Fernández, G.; Würthner, F., Self-Sorting
Phenomena in Complex Supramolecular Systems. Chem. Rev. 2011, 111,
5784-5814.
26. Draper, E. R.; Wallace, M.; Schweins, R.; Poole, R. J.; Adams, D. J.,
Nonlinear Effects in Multicomponent Supramolecular Hydrogels.
Langmuir 2017, 33, 2387-2395.
45. Draper, E. R.; Eden, E. G. B.; McDonald, T. O.; Adams, D. J.,
Spatially resolved multicomponent gels. Nat. Chem. 2015, 7, 848–852.
46. Morris, K. L.; Chen, L.; Raeburn, J.; Sellick, O. R.; Cotanda, P.; Paul,
A.; Griffiths, P. C.; King, S. M.; O’Reilly, R. K.; Serpell, L. C.; Adams,
D. J., Chemically programmed self-sorting of gelator networks. Nat.
Comm. 2013, 4, 1480.
47. Onogi, S.; Shigemitsu, H.; Yoshii, T.; Tanida, T.; Ikeda, M.; Kubota,
R.; Hamachi, I., In situ real-time imaging of self-sorted supramolecular
nanofibres. Nat. Chem. 2016, 8, 743–752.
27. Ramalhete, S. M.; Nartowski, K. P.; Sarathchandra, N.; Foster, J. S.;
Round, A. N.; Angulo, J.; Lloyd, G. O.; Khimyak, Y. Z., Supramolecular
Amino Acid Based Hydrogels: Probing the Contribution of Additive
Molecules using NMR Spectroscopy. Chem. Eur. J. 2017, 23, 8014-8024.
10
ACS Paragon Plus Environment