ChemComm
Page 4 of 5
pesticides. Consequently, these molecular tubes should be
useful in combating chemical warfare agents.
This research was financially supported by the National
DOI: 10.1039/C9CC04603H
Natural Science Foundation of China (Nos. 21772083,
2
1822104), the Shenzhen Science and Technology Innovation
Committee (Nos. JCYJ20180504165810828 and KQJSCX
0170728162528382), and the Shenzhen Nobel Prize Scientists
2
Laboratory Project (C17783101). We thank SUSTech-MCPC for
instrumental assistance.
Conflicts of interest
There are no conflicts to declare.
o
Fig. 7 In vitro enzymatic experiments (37 C, UV-vis absorption monitored at 412nm)
to demonstrate the prevention of paraoxon’s toxicity to AChE by 1a. a) AChE +
substrate + indicator; b) 1 eq. 1a + AChE + substrate + indicator; c) 5 eq. 1a + AChE +
substrate + indicator + 1 eq. paraoxon; d) 1 eq. 1a + AChE + substrate + indicator + 1
eq. paraoxon; e) AChE + substrate + indicator + 1 eq. paraoxon; f) 1 eq. 1a + substrate
Notes and references
+
indicator. Substrate: AICI; indicator: DTNB.
1
2
3
R. C. Gupta, Toxicology of Organophosphate and Carbamate
Compounds, Elsevier Academic Press, New York, 2006.
conditions were detected with the help of the indicator 5,5'-
dithiobis(2-nitrobenzoic acid) (DTNB) and the substrate
acetylthiocholine iodide (AICI). Figs. 7a, 7b, and 7f show that
one equivalent of molecular tube 1a has little influence on the
hydrolysis of AICI by AChE. But the existence of one equivalent
of paraoxon 8 completely shut down the activity of AChE (Fig.
Y. J. Jang, K. Kim, O. G. Tsay, D. A. Atwood and D. G. Churchill, Chem. Rev.,
2015, 115, PR1.
4
5
S. S. Aleksenko, P. Gareil and A. R. Timerbaev, Analyst, 2011, 136, 4103.
(a) T. J. Dale and J. Rebek Jr, J. Am. Chem. Soc., 2006, 128, 4500; (b) T. J. Dale
and J. Rebek Jr., Angew. Chem., Int. Ed., 2009, 48, 7850; (c) D.
Ajami and J. Rebek Jr., Org. Biomol. Chem., 2013, 11, 3936; (d) X. Sun and E.
V. Anslyn, Angew. Chem. Int. Ed., 2017, 56, 9522; (e) X. Sun, S. D.
Dahlhauser and E. V. Anslyn, J. Am. Chem. Soc., 2017, 139, 4635; (f) S.-
W. Zhang, T. M. Swager, J. Am. Chem. Soc., 2003, 125, 3420.
a) M. Zengerle, F. Braundhuber, C. Schneider, F. Worek, G. Reiter and S.
Kubik, Beilstein J. Org. Chem., 2011, 7, 1543; (b) C. Schneider, A. Bierwisch, M.
Koller, F. Worek and S. Kubik, Angew. Chem., Int. Ed., 2016, 55, 12668.
7
e). In the presence of one equivalent of 1a, the function of
AChE can be restored to some extent even when adding
paraoxon 8 (Figs. 6 and 7d). But this is only effective when
adding 1a before 8 (Figs. S52-54). This is in line with the fact
that 8 irreversibly blocks to the catalytic site of AChE.
Increasing the amount of 1a to five equivalents does not
significantly improve the restoration (Fig. 7c). This may be due
6
7
(a) S. E. Border, R. Z. Pavlovic, Z. Lei and J. D. Badjić, J. Am. Chem.
Soc., 2017, 139, 18496; (b) S. E. Border, R. Z. Pavlovic, Z. Lei, M. J.
Gunther, H. Wang, H. Cui and J. D. Badjić, Chem. Commun., 2019,
-1
a
to the following reasons: 1a can also bind AICl (K = 7300 M ,
Figs. S55-S57) and thus the existence of a large amount of 1a
would also inhibit the hydrolysis of AICl by AChE. Nevertheless,
AICl will be slowly released from the cavity of 1a and undergo
hydrolysis catalysed by AChE. Indeed, the hydrolysis kinetics
did not reach a plateau even after 160 min (Fig. 7c) when all
other experiments have been finished.
55, 1987.
8
9
B.-L. Poh and W. Saenger, Spectrochim. Acta., 1983, 39, 305.
C. Tudisco, P. Betti, A. Motta, R. Pinalli, L. Bombaci, E. Dalcanale and G. G.
Condorelli, Langmuir, 2012, 28, 1782.
1
0 (a) Y. Ruan, H. A. Taha, R. J. Yoder, V. Maslak, C. M. Hadad and
J. D. Badji
Ruan, J. D. Brown, J. Gallucci, V. Maslak, C. M. Hadad and J. D.
Badji , J. Am. Chem. Soc., 2013, 135, 14964; (c) S. Chen, Y. Ruan,
J. D. Brown, C. M. Hadad and J. D. Badji , J. Am. Chem. Soc.,
014, 136, 17337.
ć, J. Phys. Chem. B, 2013, 117, 3240; (b) S. Chen, Y.
ć
In summary, we report that the molecular tubes with
hydrogen bonding donors in their deep hydrophobic cavity can
ć
2
strongly bind organophosphorus compounds in water by using 11 (a) G.-B. Huang, S.-H. Wang, H. Ke, L.-P. Yang and W. Jiang, J.
hydrogen bonding and the hydrophobic effect. These
organophosphorus compounds include the toxic pesticides
dimethoate, acephate and paraoxon. The binding affinities are
generally stronger than other molecular receptors only with a
non-functionalized hydrophobic cavity. The binding is
enthapically driven, in contrast to the dominated entropic
contribution for other molecular receptors. In addition, the
molecular tubes show fluorescent enhancement to certain
organophosphorus compounds, permitting their use as
fluorescent sensors to toxic organophosphorus compounds
such as nerve agents. Finally, the in vitro enzymatic
experiments suggest that the molecular tubes may be used as
a non-covalent scavenger to reduce the toxicity of paraoxon to
Am. Chem. Soc., 2016, 138, 14550; (b) L.-L. Wang, Z. Chen, W.-E.
Liu, H. Ke, S.-H. Wang and W. Jiang, J. Am. Chem. Soc., 2017,
1
39, 8436; (c) H. Yao, H. Ke, X. Zhang, S.-J. Pan, M.-S. Li, L. P.
Yang, G. Schreckenbach and W. Jiang, J. Am. Chem. Soc., 2018,
40, 13466; (d) G.-B. Huang, W.-E. Liu, A. Valkonen, H. Yao, K.
1
Rissanen and W. Jiang, Chin. Chem. Lett., 2018, 29, 91; (e) H. Ke, L.-P.
Yang, M. Xie, Z. Chen, H. Yao and W. Jiang, Nat. Chem., 2019,
1
1, 470; (f) L.-M. Bai, H. Zhou, W.-E. Liu, H. Chai, L.-P. Yang, W.
Yan, W. Zhang, H.-H. Yang and W. Jiang. Chem.
Commun. 2019, 55, 3128; (g) L.-M. Bai, H. Yao, L.-P. Yang, W. Zhang
and W. Jiang. Chin. Chem. Lett. 2019, 30, 881.
2 (a) F. Biedermann, W. M. Nau and H.-J. Schneider, Angew. Chem. Int.
Ed., 2014, 53, 11158; (b) P. S. Cremer, A. H. Flood, B. C. Gibb and D. L.
Mobley, Nat. Chem., 2018, 10, 8.
1
1
3 Nachon, X. Brazzolotto, M. Trovaslet and P. Masson, Chem.-Biol. Interact.,
2013, 206, 536.
acetylcholinesterase. This may be extended to other toxic 14 G. L. Ellman, K. D. Courtney, V. Andres Jr. and R. M. Featherstone.
Biochem. Parmacol., 1961, 7, 88.
organophosphorus compounds, such as nerve agents and