Journal of the American Chemical Society
Page 4 of 6
discrete linear and cyclic block copolymers with predetermined
ACKNOWLEDGMENT
1
2
3
4
5
6
7
8
block ratios. Our method should allow the access to discrete
polymers and block copolymers of a desired topology for a wide
range of molecular weights. These polymers without structural
uncertainty could serve as model systems for the exploration of
the physical and chemical properties of synthetic
macromolecules without statistical distribution in chemical
structures, which could lead to a new understanding of polymer
properties and applications.
This work was supported by National Research Foundation (NRF)
of Korea (NRF-2019R1A2C3007541). We also thank Seoul
National University (SNU) for the support by Creative-Pioneering
Researchers Program (305-20190050).
REFERENCES
(1) Kricheldorf. H. R. Cyclic Polymers: Synthetic Strategies and
Physical Properties. J. Polym. Sci. Part A: Polym. Chem. 2010, 48,
251–284.
(2) Tezuka, Y; Oike, H. Topological polymer chemistry. Prog.
Polym. Sci. 2002, 27, 1069-1122.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) Habuchi, S.; Satoh, N.; Yamamoto, T.; Tezuka, Y. Single-
molecule study on polymer diffusion in a melt state: Effect of chain
topology. Angew. Chem. Int. Ed. 2010, 122, 1460-1463.
(4) Yamamoto, T; Tezuka, Y. Cyclic polymers revealing topology
effects upon self-assemblies, dynamics and responses. Soft Matter,
2015, 11, 7458-7468.
(5) Divandari, M.; Trachsel, L.; Yan, W.; Rosenboom,J-G.; Spencer,
N. D.; Zenobi-Wong, M.; Morgese, G.; Ramakrishna, S. N.; Benetti, E.
M. Surface Density Variation within Cyclic Polymer Brushes Reveals
Topology Effects on Their Nanotribological and Biopassive Properties.
ACS Macro Lett. 2018, 7, 1455−1460.
(6) Shea, K. J.; Lee. S. Y.; Busch, B. B. A New Strategy for the
Synthesis of Macrocycles. The Polyhomologation of Boracylanes. J.
Org. Chem. 1998, 63, 5746–5747.
(7) Culkin, D. A.; Jeong, W.; Csihony, S.; Gomez, E. D.; Balsara,
N. P.; Hedrick, J. L.; Waymouth, R. M. Zwitterionic Polymerization of
Lactide to Cyclic Poly(lactide) by using N-Heterocyclic Carbene
Organocatalysts. Angew. Chem. Int. Ed. 2007, 46, 2627–2630.
(8) Bielawski, C. W.; Benite, D.; Grubbs, R. H. An “Endless” Route
to Cyclic Polymers. Science 2002. 297, 2014–2044.
(9) Guo, L.; Zhang, D. Cyclic Poly(α-peptoid)s and Their Block
Copolymers from N-Heterocyclic Carbene-Mediated Ring-Opening
Polymerization of N-Substituted N-Carboxyanhydrides. J. Am. Chem.
Soc. 2009, 131, 18072–18074.
(10) Gonsales, S. A.; Kubo, T.; Flint, M. K.; Abboud, K. A.;
Summerlin, B. S.; Veige, A. S. Highly Tactic Cyclic Polynorbornens:
Stereoselective Ring Expansion Metathesis Polymerization of
Norbornene Catalyzed by a New Tethered Tungsten-Alkylidene
Catalyst. J. Am. Chem. Soc. 2016, 138, 4996–4999.
(11) Laurent, B. A.; Grayson, S. M. Synthetic Approaches for the
Preparation of Cyclic Polymers. Chem. Soc. Rev. 2009, 38, 2202–2213.
(12) Laurent, B. A.; Grayson, S. M. An Efficient Route to Well-
Defined Macrocyclic Polymers via “Click” Cyclization. J. Am. Chem.
Soc. 2006, 128, 4238–4239.
(13) Ge, Z.; Zhou, Y.; Xu, J.; Liu, H.; Chen. D.; Liu, S. High-
Efficiency Preparation of Macrocyclic Diblock Copolymers via
Selective Click Reaction in Micellar Media. J. Am. Chem. Soc. 2009,
131, 1628–1629.
(14) Xu, J.; Ye, J.; Liu, S. Synthesis of Well-Defined Cyclic Poly(N-
isopropylacrylamide) via Click Chemistry and Its Unique Thermal
Phase Transition Behavior. Macromolecules 2007, 40, 9103–9110.
(15) Kapnistos, M.; Lang, M.; Vlassopoulos, D.; Pyckhout-Hintzen,
W.; Richter, D.; Cho, D.; Chang, T.; Rubinstein, M. Unexpected
Power-Law Stress Relaxation of Entangled Ring Polymers. Nat. Mater.
2008, 7, 997–1002.
(16) Gao, L.; Oh, J.; Tu, Y.; Chang, T.; Li, C. Y. Glass Transition
Temperature of Cyclic Polystyrene and the Linear Counterpart
Contamination Effect. Polymer 2019, 170, 198–203.
(17) He, Q.; Mao, J.; Wesdemiotis, C.; Quirk, R. P.; Foster, M. D.
Synthesis and Isomeric Characterization of Well-Defined 8-Shaped
Polystyrene Using Anionic Polymerization, Silicon Chloride Linking
Chemistry, and Metathesis Ring Closure. Macromolecules 2017, 50,
5779-5789.
(18) Haque, F. M.; Grayson, S. M. The synthesis, properties and
potential applications of cyclic polymers. Nat. Chem. 2020, 12, 433-
444.
Figure 4. (A) Synthesis of cyclic block copolymers. a: Et3SiH,
Pd/C; 2-azidoethanol, EDC, DPTS. b: BF3•Et2O; 4-pentynoic acid,
EDC, DPTS. c: CuBr, PMDETA. (B) GPC traces of dPLA and dPL
precursors and their linear diblock and cyclic block copolymers.
(C) MALDI-TOF mass spectra of constituent polymer blocks and
linear and cyclic block copolymers.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS
Publications website.
Synthesis and full characterization for dPLAs, cyclic dPLAs, and
linear- and cyclic-block copolymers. GPC analysis of the coupling
and cyclization. Self-assembly of linear and cyclic block
copolymers (PDF).
AUTHOR INFORMATION
Corresponding Author
Kyoung Taek Kim – Department of Chemistry, Seoul National
University, 1 Gwanak Road, Seoul 08826, Korea; Email:
Author Contributions
†M. B. Koo and S. W. Lee contributed equally.
Notes
The authors declare no competing financial interest.
ACS Paragon Plus Environment