Organometallics
Article
p-tBu-styrene and the newly formed addition product. Reactions in dry
benzene-d6 were carried out in a similar manner, but with the solvent
added at the same time as the substrates to the NMR tube.
Catalysis for Sustainable Development”, and by the European
Union (grant FP7-People-2010-IIF ChemCatSusDe to B.L.).
{LONO2}CaCH(SiMe3)2·THF (7). At room temperature, a solution of
{LONO2}H (0.35 g, 1.00 mmol) in pentane (10 mL) was added slowly
to a solution of Ca{CH(SiMe3)2}2·2THF (0.52 g, 1.03 mmol) in
pentane (10 mL). After 6 h, the reaction solution was concentrated to
5 mL, giving a white precipitate which was isolated by filtration. The
resulting powder was dried in vacuo to constant weight to afford 7 as a
colorless powder (0.40 g, 70%). Single crystals suitable for X-ray
diffraction crystallography were obtained by recrystallization from a
concentrated pentane/benzene mixture. 1H NMR (benzene-d6, 298 K,
500.13 MHz): δ 7.58 (d, 4JHH = 2.4 Hz, 1H, m-H), 6.96 (d, 4JHH = 2.4
Hz, 1H, m-H), 3.60 (m, 4H, THF), 3.16 (br s, 2H, Ar-CH2N), 2.97 (s,
6H, OCH3), 2.73 (m, 2H, CH2C(H)HO), 2.63 (m, 2H, CH2C(H)-
HO), 2.02 (m, 2H, NCH2CH2), 1.83 (m, 2H, NCH2CH2, overlapping
with s, 9H, o-C(CH3)3), 1.48 (s, 9H, p−C(CH3)3), 1.40 (m, 4H,
THF), 0.47 (s, 18H, Si(CH3)3), −1.87 (s, 1H, CHSi(CH3)3) ppm.
13C{1H} NMR (benzene-d6, 298 K, 125.76 MHz): δ 164.8 (i-C), 137.6
(o-C), 126.2 (p-C), 124.9 (m-C), 70.4 (CH2CH2O), 68.7 (THF), 60.4
(OCH3), 58.2 (ArCH2N), 54.3 (NCH2CH2), 36.3 (o-C(CH3)3), 34.9
(p-C(CH3)3), 32.9 (p-C(CH3)3), 31.0 (o-C(CH3)3), 26.1 (THF), 6.8
(Si(CH3)3), 1.9 (CHSi(CH3)3) ppm.
REFERENCES
■
(1) For reviews, see: (a) Wicht, D. K.; Glueck, D. S. In Catalytic
Heterofunctionalization; Togni, A., Grutzmacher, H., Eds.; Wiley-VCH:
̈
Weinheim, Germany, 2001; pp 143−170. (b) Tanaka, M. Top. Curr.
Chem. 2004, 232, 25−54. (c) Glueck, D. S. In Topics in Organometallic
Chemistry; Vigalok, A., Ed.; Springer-Verlag: Berlin, Heidelberg, 2010;
Vol. 31 (C−X Bond Formation), pp 65−100. (d) Pullarkat, S. A.;
Leung, P. H. In Topics in Organometallic Chemistry; Ananikov, V. P.,
Tanaka, M., Eds.; Springer-Verlag: Berlin, Heidelberg, 2013; Vol. 43
(Hydrofunctionalization), pp 145−166. (e) Koshti, V.; Gaikwad, S.;
Chikkali, S. H. Coord. Chem. Rev. 2014, 265, 52−73. (f) Greenhalgh,
M. D.; Jones, A. S.; Thomas, S. P. ChemCatChem 2015, 7, 190−222.
(g) Rodriguez-Ruiz, V.; Carlino, R.; Bezzenine-Lafollee, S.; Gil, R.;
Prim, D.; Schulz, E.; Hannedouche, J. Dalton Trans. 2015, 44, 12029−
12059.
(2) (a) Shulyupin, M. O.; Kazankova, M. A.; Beletskaya, I. P. Org.
Lett. 2002, 4, 761−763. (b) Kazankova, M. A.; Shulyupin, M. O.;
Borisenko, A. A.; Beletskaya, I. P. Russ. J. Org. Chem. 2002, 38, 1479−
1484.
(3) (a) Huang, Y. H.; Chew, R. J.; Li, Y. X.; Pullarkat, S. A.; Leung, P.
H. Org. Lett. 2011, 13, 5862−5865. (b) Xu, C.; Kennard, G. J. H.;
Hennersdorf, F.; Li, Y. X.; Pullarkat, S. A.; Leung, P. H. Organo-
metallics 2012, 31, 3022−3026. (c) Huang, Y. H.; Pullarkat, S. A.;
Teong, S.; Chew, R. J.; Li, Y. X.; Leung, P. H. Organometallics 2012,
31, 4871−4875. (d) Huang, Y. H.; Pullarkat, S. A.; Li, Y. X.; Leung, P.
H. Inorg. Chem. 2012, 51, 2533−2540.
(4) (a) Pringle, P. G.; Smith, M. B. J. Chem. Soc., Chem. Commun.
1990, 1701−1702. (b) Wicht, D. K.; Kourkine, I. V.; Lew, B. M.;
Nthenge, J. M.; Glueck, D. S. J. Am. Chem. Soc. 1997, 119, 5039−5040.
(c) Wicht, D. K.; Kourkine, I. V.; Kovacik, I.; Glueck, D. S.; Concolino,
T. E.; Yap, G. P. A.; Incarvito, C. D.; Rheingold, A. L. Organometallics
1999, 18, 5381−5394. (d) Kovacik, I.; Wicht, D. K.; Grewal, N. S.;
Glueck, D. S.; Incarvito, C. D.; Guzei, I. A.; Rheingold, A. L.
Organometallics 2000, 19, 950−953. (e) Scriban, C.; Kovacik, I.;
Glueck, D. S. Organometallics 2005, 24, 4871−4874. (f) Scriban, C.;
Glueck, D. S.; Zakharov, L. N.; Kassel, W. S.; DiPasquale, A. G.; Golen,
J. A.; Rheingold, A. L. Organometallics 2006, 25, 5757−5767.
(5) (a) Douglass, M. R.; Marks, T. J. J. Am. Chem. Soc. 2000, 122,
1824−1825. (b) Douglass, M. R.; Stern, C. L.; Marks, T. J. J. Am.
Chem. Soc. 2001, 123, 10221−10238. (c) Douglass, M. R.; Ogasawara,
M.; Hong, S.; Metz, M. V.; Marks, T. J. Organometallics 2002, 21,
283−292. (d) Motta, A.; Fragala, I. L.; Marks, T. J. Organometallics
2005, 24, 4995−5003.
(6) (a) Delacroix, O.; Gaumont, A. C. Curr. Org. Chem. 2005, 9,
1851−1882. (b) Chianese, A. R.; Lee, S. J.; Gagne, M. R. Angew.
Chem., Int. Ed. 2007, 46, 4042−4059. (c) Glueck, D. S. Chem. - Eur. J.
2008, 14, 7108−7117. (d) Glueck, D. S. Top. Organomet. Chem. 2010,
31, 65−100. (e) Rosenberg, L. ACS Catal. 2013, 3, 2845−2855.
(7) (a) Leyva-Perez, A.; Vidal-Moya, J. A.; Cabrero-Antonino, J. R.;
Al-Deyab, S. S.; Al-Resayes, S. I.; Corma, A. J. Organomet. Chem. 2011,
696, 362−367. (b) Isley, N. A.; Linstadt, R. T. H.; Slack, E. D.;
Lipshutz, B. H. Dalton Trans. 2014, 43, 13196−13200.
{LONO2}Sr{CH(SiMe3)2} (8). Following the same procedure as that
described for 7, {LONO2}H (0.40 g, 1.14 mmol) was reacted with
Sr{CH(SiMe3)2}2·3THF (0.73 g, 1.17 mmol) to give 8 as a white
1
powder (0.38 g, 55%). H NMR (THF-d8, 298 K, 500.13 MHz): δ
7.08 (s, 1H, m-H), 6.75 (s, 1H, m-H), 3.58 (overlapping br, 2H,
ArCH2N + s, 2H, CH2O), 3.52 (br s, 2H, CH2O), 3.47 (s, 6H,
OCH3), 2.70 (br s, 2H, NCH2CH2), 2.63 (br s, 2H, NCH2CH2), 1.43
(s, 9H, o-C(CH3)3), 1.22 (s, 9H, p-C(CH3)3), 0.03 (s, 18H,
Si(CH3)3), −2.20 (s, 1H, CHSi(CH3)3) ppm. 13C{1H} NMR (THF-
d8, 298 K, 125.76 MHz): δ 166.5 (i-C), 136.4 (o-C), 131.9 (p-C),
126.8 (o-C), 124.0 (m-C), 123.6 (m-C), 71.7 (CH2O), 69.9 (CH2O),
60.3 (OCH3), 60.1 (ArCH2N), 54.6 (NCH2CH2), 36.1 (o-C(CH3)3),
34.5 (p-C(CH3)3), 32.7 (p-C(CH3)3), 30.7 (o-C(CH3)3), 6.6 (Si-
(CH3)3), 1.7 (CHSi(CH3)3), ppm.
ASSOCIATED CONTENT
■
S
* Supporting Information
1
added as CIF files. H NMR spectra for monitored catalyzed
reactions. The Supporting Information is available free of
NMR data for 7 and 8, NMR monitoring of substrate
conversion in hydrophosphination reactions, character-
ization of new phosphines, and crystallographic data for 3
AUTHOR INFORMATION
■
Corresponding Authors
(8) (a) Erickson, K. A.; Dixon, L. S. H.; Wright, D. S.; Waterman, R.
Inorg. Chim. Acta 2014, 422, 141−145. (b) Stelmach, J. P. W.; Bange,
C. A.; Waterman, R. Dalton Trans. 2016, 45, 6204.
(9) (a) Perrier, A.; Comte, V.; Moise, C.; Le Gendre, P. Chem. - Eur.
J. 2010, 16, 64−67. (b) Ghebreab, M. B.; Bange, Ch. A.; Waterman, R.
J. Am. Chem. Soc. 2014, 136, 9240−9243. (c) Bange, C. A.; Ghebreab,
M. B.; Ficks, A.; Mucha, N. T.; Higham, L.; Waterman, R. Dalton
Trans. 2016, 45, 1863−1867.
Notes
The authors declare no competing financial interest.
(10) (a) Crimmin, M. R.; Barrett, A. G. M.; Hill, M. S.; Hitchcock, P.
B.; Procopiou, P. A. Organometallics 2007, 26, 2953−2956. (b) Liu, B.;
Roisnel, T.; Carpentier, J.-F.; Sarazin, Y. Angew. Chem., Int. Ed. 2012,
51, 4943−4946. (c) Hu, H.; Cui, C. Organometallics 2012, 31, 1208−
1211. (d) Liu, B.; Roisnel, T.; Carpentier, J.-F.; Sarazin, Y. Chem. - Eur.
J. 2013, 19, 13445−13462.
ACKNOWLEDGMENTS
■
This work was sponsored by the Russian Foundation for Basic
Research (Grant 15-33-20285), by a Grant of the President of
the Russian Federation for young scientists (Grant No. MK-
5702.2015.3), by the GDRI CNRS-RAS “Homogeneous
J
Organometallics XXXX, XXX, XXX−XXX