Notes and references
1
(a) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457;
b) A. F. Littke and G. C. Fu, Angew. Chem., Int. Ed., 2002,
1, 4176; (c) C.-J. Li, Chem. Rev., 2005, 105, 3095; (d) A. Molnar,
(
4
Chem. Rev., 2011, 111, 2251.
(a) F. Monnier and M. Taillefer, Angew. Chem., Int. Ed., 2009,
2
4
(
8, 6954; (b) D. Ma and Q. Cai, Acc. Chem. Res., 2008, 41, 1450;
c) H.-J. Cristau, P. P. Cellier, J.-F. Spindler and M. Taillefer,
Chem.–Eur. J., 2004, 10, 5607; (d) D. D. Hennings, T. Iwama and
V. H. Rawal, Org. Lett., 1999, 1, 1205.
(a) P. Garcia, M. Malacria, C. Aubert, V. Gandon and
3
L. Fensterbank, ChemCatChem, 2010, 2, 493; (b) C. Gonza
Arellanoa, A. Cormab, M. Iglesiasc and F. Sanchez, J. Catal.,
006, 238, 497; (c) C. Gonzalez-Arellano, A. Corma, M. Iglesias
and F. Sanchez, Chem. Commun., 2005, 1990; (d) S. Carrettin,
A. Corma, M. Iglesias and F. Sanchez, Appl. Catal., A, 2005,
91, 247; (e) J. Han, Y. Liu and R. Guo, J. Am. Chem. Soc., 2009,
´
lez-
Scheme 1 Proposed mechanism for the Ullmann-type homocoupling
reaction of iodobenzene catalyzed by Au25(SR)18 nanoclusters (green:
surface Au atoms, yellow: core Au atoms, the thiol ligands are omitted
for clarity).
´
2
´
´
´
2
was performed with a fresh solvent and reactants under
identical conditions. We found that the conversion was only
slightly decreased (within 5%) after five cycles (see ESIw); thus,
131, 2060; (f) H. Tsunoyama, H. Sakurai, N. Ichikuni, Y. Negishi
and T. Tsukuda, Langmuir, 2004, 20, 11293; (g) S. Carrettin,
J. Guzman and A. Corma, Angew. Chem., Int. Ed., 2005,
4
4, 2242; (h) B. Karimi and F. K. Esfahani, Chem. Commun.,
011, 47, 10452; (i) N. P. Mankad and F. D. Toste, J. Am. Chem.
2
the Au25(SR)18/CeO catalyst shows an excellent recyclability.
2
Soc., 2010, 132, 12859.
With respect to the catalytic mechanism, the reactant iodo-
benzene is thought to be first absorbed on the gold surface due
to the Iꢀ ꢀ ꢀAu interaction, and then the CꢁI bond becomes
activated on the nanocluster surface. In the case of gold(I)
complex catalysts, formation of the Iꢀ ꢀ ꢀAuꢀ ꢀ ꢀC intermediate is
supported by gas-phase studies of a combination of mass-
spectrometry-based experiments and density functional theory
4
5
(a) M. Cargnello, N. L. Wieder, P. Canton, T. Montini,
G. Giambastiani, A. Benedetti, R. J. Gorte and P. Fornasiero,
Chem. Mater., 2011, 23, 3961; (b) J. Xu, A. R. Wilson,
A. R. Rathmell, J. Howe, M. Chi and B. J. Wiley, ACS Nano,
2
011, 5, 6119.
(a) R. Jin, Nanotechnol. Rev., 2011, 1, 31, and references therein;
b) D. P. Cristina, F. Ermelinda and R. Michele, Chem. Soc. Rev.,
012, 41, 350; (c) C.-J. Jia and F. Schuth, Phys. Chem. Chem.
Phys., 2011, 13, 2457; (d) M. Haruta, Chem. Rec., 2003, 3, 75;
e) Y. Liu, H. Tsunoyama, T. Akita and T. Tsukuda, Chem.
(
2
¨
3i,12
(DFT) calculations.
The above catalytic results demonstrate
(
the excellent catalytic performance of Au25(SR)18 nanoclusters in
the C–C homocoupling reaction of aryl iodides. The Au25(SR)18
Commun., 2010, 46, 550; (f) D. R. Kauffman, D. Alfonso,
C. Matranga, H. Qian and R. Jin, J. Am. Chem. Soc., 2012,
134, 10237; (g) Y. Zhu, H. Qian, B. A. Drake and R. Jin, Angew.
Chem., Int. Ed., 2010, 49, 1295; (h) S. K. Beaumont, G. Kyriakou
and R. M. Lambert, J. Am. Chem. Soc., 2010, 132, 12246;
10
nanoclusters have a good capability of electron transfer.
We propose the following mechanism for the Ullmann-type
homocoupling reaction of iodobenzene catalyzed by Au (SR)
18
25
(
1
i) N. Thielecke, M. Aytemir and U. Drusse, Catal. Today, 2007,
21, 115.
nanoclusters (Scheme 1). First, the substrate is absorbed on the
0
surface of the Au (SR) /CeO catalyst to form [Au ](R I)
25
6 M. Zhu, E. Lanni, N. Garg, M. E. Bier and R. Jin, J. Am. Chem.
Soc., 2008, 130, 1138.
M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz and R. Jin,
J. Am. Chem. Soc., 2008, 130, 5883.
8 (a) Z. Wu and R. Jin, ACS Nano, 2009, 3, 2036; (b) Y. Zhu,
H. Qian and R. Jin, Chem.–Eur. J., 2010, 16, 11455.
M. Zhu, W. T. Eckenhoff, T. Pintauer and R. Jin, J. Phys. Chem.
C, 2008, 112, 14221.
0 M. Zhu, C. M. Aikens, M. P. Hendrich, R. Gupta,
2
5
18
2
2
0
(
R = Ph), and then the C–I bond activation should occur by
7
the exterior Au12 shell since the shell gold atoms appear positive
i.e. Aud+, 0 o d o 1), giving rise to [Au25
0
(
R
]I
2 2
intermediates.
0
The reductive elimination of [Au25
product biphenyl (Scheme 1).
R ]I generates the final
2 2
9
In summary, we have investigated the catalytic capability of the
Au25(SR)18/CeO catalyst for the carbon–carbon homocoupling
1
2
H. Qian, G. C. Schatz and R. Jin, J. Am. Chem. Soc., 2009,
31, 2490.
1
reaction of iodobenzene to the biphenyl product. No distinct effect
of the oxide supports was observed. We have demonstrated that the
catalyst can catalyze a series of aryl iodides with high conversion.
1
1 (a) Y. Zhu, Z. Wu, G. C. Gayathri, H. Qian, R. R. Gil and R. Jin,
J. Catal., 2010, 271, 155; (b) H. Yamamoto, H. Yano, H. Kouchi,
Y. Obora, R. Arakawa and H. Kawasaki, Nanoscale, 2012,
4, 4148.
12 (a) P. S. D. Robinson, G. N. Khairallah, G. Silva, H. Lioe and
R. A. J. O’Hair, Angew. Chem., Int. Ed., 2012, 51, 3878;
The catalyst can also be easily recovered. The positively charged
surface gold atoms (Aud+) of Au25(SR)18 nanoclusters are ratio-
nalized to be active sites for activating iodobenzene, whereas the
(
b) U. Mazurek and H. Schwarz, Chem. Commun., 2003, 1321.
10
electron-rich, redox-active Au13 kernel participates the electron
transfer process in the catalytic reaction. The gold nanoclusters hold
a great potential in catalysis and may be further explored for other
carbon–carbon coupling reactions.
13 (a) A. Goguet, M. Ace, Y. Saih, J. Sa, J. Kavanagh and
C. Hardacre, Chem. Commun., 2009, 4889; (b) C. Gonzalez-
´
Arellano, A. Abad, A. Corma, H. Garcıa, M. Iglesias and
F. Sanchez, Angew. Chem., Int. Ed., 2007, 46, 1536.
´
1
4 (a) X. Liu, C. Li, J. Xu, J. Lv, M. Zhu, Y. Guo, S. Cui, H. Liu,
S. Wang and Y. Li, J. Phys. Chem. C, 2008, 112, 10778;
This work is financially support by the Air Force Office of
Scientific Research under AFOSR Award No. FA9550-11-1-
(
b) H. Kawasaki, H. Yamamoto, H. Fujimori, R. Arakawa,
Y. Iwasaki and M. Inada, Langmuir, 2010, 26, 5926;
c) M. Hyotanishi, Y. Isomura, H. Yamamoto, H. Kawasaki and
Y. Obora, Chem. Commun., 2011, 47, 5750.
9
999 (FA9550-11-1-0147). NMR instrumentation at CMU is
(
partially supported by NSF (CHE-0130903).
This journal is c The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 12005–12007 12007