Journal of the American Chemical Society
Page 4 of 9
of KR to MT-catalyzed products consistent with the natural pro-
AUTHOR INFORMATION
1
2
3
4
5
6
7
8
gramming rules of LovB. Most of the KR products were found to
contain the m/z 215 ion and split into two major peaks. The earlier
peak at TR~4 min is the -hydroxyl compound (parent m/z 233
also observed) and has undergone dehydration during ionization.
A standard of the -hydroxyl compound gave an identical ioniza-
tion pattern. The second peak at TR~6 min is the actual dehydrated
dienyl-SNAC, which forms readily in aqueous solution. When the
natural tetraketide 2 was used in the competition assay, only the
methylated product 14 was observed. Selected ion monitoring
revealed that no reduced products can be found in the assay, there-
by confirming the much higher catalytic efficiency of the MT do-
main towards 2 compared to that of KR. Interestingly, no further
-ketoreduction of 14 can be detected in the assay. Directly using
14 in a KR-only assay also did not yield any ketoreduced products.
This observation is unexpected as the acyl portion of 14 is the natu-
ral substrate of KR in the predicted programmed steps of LovB
(Figure 1). Although the exact reason for this result is unresolved,
one possible explanation may be recognition of the acyl portion of
14 (in the -keto form) requires interactions with the ACP as ob-
served in other PKS systems by NMR studies .23
Corresponding Author
Author Contributions
‡These authors contributed equally.
ACKNOWLEDGMENT
These investigations were supported by the by NIH (1R01GM085128
and 1DP1GM106413) YT; and the Natural Sciences & Engineering
Research Council of Canada (NSERC) and by the Canada Research
Chair in Bioorganic & Medicinal Chemistry to JCV.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) Chooi, Y. H.; Tang, Y. J. Org. Chem. 2012, 77, 9933.
(2) Cox, R. J. Org. Biomol. Chem. 2007, 5, 2010.
(3) Kennedy, J.; Auclair, K.; Kendrew, S. G.; Park, C.; Vederas, J. C.;
Richard Hutchinson, C. Science 1999, 284, 1368.
(4) Ma, S. M.; Li, J. W.-H.; Choi, J. W.; Zhou, H.; Lee, K. K. M.;
Moorthie, V. A.; Xie, X.; Kealey, J. T.; Da Silva, N. A.; Vederas, J. C.;
Tang, Y. Science 2009, 326, 589.
(5) Auclair, K.; Sutherland, A.; Kennedy, J.; Witter, D. J.; Van den
Heever, J. P.; Hutchinson, C. R.; Vederas, J. C. J. Am. Chem. Soc. 2000,
122, 11519.
(6) Istvan, E. S.; Deisenhofer, J. Science 2001, 292, 1160.
(7) Khosla, C.; Herschlag, D.; Cane, D. E.; Walsh, C. T. Biochemistry
2014, 53, 2875.
(8) Kakule, T. B.; Lin, Z.; Schmidt, E. W. J. Am. Chem. Soc. 2014, 136,
17882.
(9) Fisch, K. M.; Bakeer, W.; Yakasai, A. A.; Song, Z.; Pedrick, J.;
Wasil, Z.; Bailey, A. M.; Lazarus, C. M.; Simpson, T. J.; Cox, R. J. J. Am.
Chem. Soc. 2011, 133, 16635.
(10) Winter, J. M.; Sato, M.; Sugimoto, S.; Chiou, G.; Garg, N. K.;
Tang, Y.; Watanabe, K. J. Am. Chem. Soc. 2012, 134, 17900.
(11) Xie, X.; Meehan, M. J.; Xu, W.; Dorrestein, P. C.; Tang, Y. J. Am.
Chem. Soc. 2009, 131, 8388.
(12) Eley, K. L.; Halo, L. M.; Song, Z.; Powles, H.; Cox, R. J.; Bailey,
A. M.; Lazarus, C. M.; Simpson, T. J. Chembiochem 2007, 8, 289.
(13) Ames, B. D.; Nguyen, C.; Bruegger, J.; Smith, P.; Xu, W.; Ma, S.;
Wong, E.; Wong, S.; Xie, X.; Li, J. W.-H.; Vederas, J. C.; Tang, Y.; Tsai,
S.-C. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 11144.
(14) Zou, Y.; Xu, W.; Tsunematsu, Y.; Tang, M.; Watanabe, K.; Tang,
Y. Org. Lett. 2014, 16, 6390.
(15) Mikami, K.; Matsukawa, S. J. Am. Chem. Soc. 1993, 115, 7039.
(16) Ge, H.-M.; Huang, T.; Rudolf, J. D.; Lohman, J. R.; Huang, S.-X.;
Guo, X.; Shen, B. Org. Lett. 2014, 16, 3958.
(17) Oikawa, Y.; Sugano, K.; Yonemitsu, O. J. Org. Chem. 1978, 43,
2087.
(18) Piasecki, Shawn K.; Taylor, Clint A.; Detelich, Joshua F.; Liu, J.;
Zheng, J.; Komsoukaniants, A.; Siegel, Dionicio R.; Keatinge-Clay,
Adrian T. Chem. Biol. 2011, 18, 1331.
(19) Keatinge-Clay, A. J. Mol. Biol. 2008, 384, 941.
(20) Wu, N.; Tsuji, S. Y.; Cane, D. E.; Khosla, C. J. Am. Chem. Soc.
2001, 123, 6465.
(21) Yin, Y.; Lu, H.; Khosla, C.; Cane, D. E. J. Am. Chem. Soc. 2003,
125, 5671.
(22) Winter, J. M.; Chiou, G.; Bothwell, I. R.; Xu, W.; Garg, N. K.;
Luo, M.; Tang, Y. Org. Lett. 2013, 15, 3774.
(23) Evans, S. E.; Williams, C.; Arthur, C. J.; Płoskoń, E.; Wattana-
amorn, P.; Cox, R. J.; Crosby, J.; Willis, C. L.; Simpson, T. J.; Crump,
M. P. J. Mol. Biol. 2009, 389, 511.
Our assays using both natural and model substrates provide an
explanation for the programmed methylation step observed in the
iterative cycles of LovB. We suggest the MT and KR domains
compete for each of the -ketoacyl substrates released by the KS
domain, and the relative rates determine the outcome of the imme-
diate tailoring domain choice. The MT domain of LovB has been
precisely tuned to be highly selective for the natural tetraketide 2
and to outcompete the KR at this particular step only. Both chain
length and functional variation in the acyl substrate can lead to
substantial penalties in catalytic efficiency for the MT domain. In
contrast, the KR domain appears to be less substrate dependent in
terms of catalytic efficiency. As a reflection of the competition
between MT and KR, a 30-fold drop in the catalytic efficiency of
MT towards 10 (as compared to 2) can lead to ~20% of the sub-
strate being ketoreduced without being first methylated. As the
correct methyl substitution is essential for recognition in some (but
not all) downstream steps,4 this may pose a significant barrier to
some precursor-directed biosyntheses of polyketides using HR-
PKSs. Particular structural variations in precursors can derail the
programmed steps of the domains and lead to production of shunt
products instead. However, it is clear from previous work that late
steps catalyzed by LovB can proceed without methylation to make
a des-methyl dihydromonacolin L.4
Our findings with the LovB MT domain poses intriguing ques-
tions as to how substrate specificity is achieved at the molecular
level, how other MT domains in HRPKSs have alternative substrate
specificities and the possible influence of the HRPKS quaternary
structure in the intrinsic biosynthetic programming rules of these
megasynthases. For example, in the fusarielin HRPKS,24 the MT
domain is functional on the di-, tri- and pentaketide intermediates,
while inactive on the tetraketide. This is a complete reversal of
specificity compared to LovB, and structural comparisons between
the two MT domains will provide insights into their differences.
ASSOCIATED CONTENT
Supporting Information
Experimental details and synthetic procedures. This material is availa-
ACS Paragon Plus Environment