Angewandte Chemie International Edition
10.1002/anie.201800288
COMMUNICATION
[
[
19]
20]
D. P. H. M. Heuts, N. S. Scrutton, W. S. McIntire, M. W. Fraaije,
FEBS J. 2009, 276, 3405-3427.
Nonetheless, GR requires light triggering for the catalysis likely
due to the limited accessibility of its FAD with respect to NOX.
R. J. Needham, C. Sanchez-Cano, X. Zhang, I. Romero-Canelón,
A. Habtemariam, M. S. Cooper, L. Meszaros, G. J. Clarkson, P. J.
Blower, P. J. Sadler, Angew. Chem. Int. Ed. 2017, 56, 1017-1020.
J. J. Soldevila-Barreda, I. Romero-Canelón, A. Habtemariam, P. J.
Sadler, Nat. Commun. 2015, 6, 6582.
In conclusion, we show that free flavins and flavoproteins
[
[
[
21]
22]
23]
IV
II
can catalyze artificial reactions of Pt and Ru complexes,
operating either in the dark or upon light excitation. Some of
these unconventional reactions have promising catalytic
efficiency and bioorthogonal selectivity. These findings open
new opportunities for the design of chemically- and light-
activated metal-based prodrugs, whose biological effects could
be triggered endogenously by bioorthogonal flavoprotein
catalysts.
S. Bose, A. H. Ngo, L. H. Do, J. Am. Chem. Soc. 2017, 139, 8792-
8
795.
After conversion to their aqua complexes, 4 and 5 underwent
formation of DMSO and NADH adducts in MES and PB buffer
(
Figure S30 and 38).
[
[
[
24]
25]
26]
Flavins and Flavoproteins, Vol. S. Weber, E. Schleicher, Springer,
New York, 2014.
S. Dhar, F. X. Gu, R. Langer, O. C. Farokhzad, S. J. Lippard, Proc.
Nat. Acad. Sci. USA 2008, 105, 17356-17361.
X. Shu, V. Lev-Ram, T. J. Deerinck, Y. Qi, E. B. Ramko, M. W.
Davidson, Y. Jin, M. H. Ellisman, R. Y. Tsien, PLOS Biol. 2011, 9,
e1001041.
[
[
27]
28]
J. Rocha-Martín, D. Vega, J. M. Bolivar, C. A. Godoy, A. Hidalgo,
J. Berenguer, J. M. Guisán, F. López-Gallego, BMC Biotechnol.
Acknowledgements
2
011, 11, 101.
V. Leskovac, S. Trivić, G. Wohlfahrt, J. Kandrač, D. Peričin, Int. J.
Biochem. Cell Biol. 2005, 37, 731-750.
J. Yu, C.-Z. Zhou, Proteins 2007, 68, 972-979.
We thank the Spanish MINECO for grant CTQ2016-80844-R,
BIO2016-77367, BIO2015-69887-R and BES-2013-065642.
COST action CM1303 is also acknowledged for support (FLG).
We thank the European Research Council ERC-CoG-648071-
ProNANO (ALC). Dr. D. Padró is acknowledged for his kind
support with NMR experiments.
[29]
[
30]
A. Rodriguez-Pulido, A. L. Cortajarena, J. Torra, R. Ruiz-
Gonzalez, S. Nonell, C. Flors, Chem. Commun. 2016, 52, 8405-
8408.
R. Ruiz-González, A. L. Cortajarena, S. H. Mejias, M. Agut, S.
Nonell, C. Flors, J. Am. Chem. Soc. 2013, 135, 9564-9567.
M. Westberg, L. Holmegaard, F. M. Pimenta, M. Etzerodt, P. R.
Ogilby, J. Am. Chem.Soc. 2015, 137, 1632-1642.
M. D. Gouda, M. S. Thakur, N. G. Karanth, Biotechnol. Tech.
[
[
[
[
31]
32]
33]
34]
1
997, 11, 653-655.
Keywords: photocatalysis, flavoproteins, metal-based
prodrugs, bioorthogonal, photochemotherapy
M. Deponte, Biochim. Biophys. Acta 2013, 1830, 3217-3266.
Information on the miniSOG structural model is provided in the
Experimental Section of the Supporting Information.
[35]
[
36]
I. Walsh, G. Minervini, A. Corazza, G. Esposito, S. C. E. Tosatto,
F. Fogolari, Bioinformatics 2012, 28, 2189-2190.
E. Wexselblatt, D. Gibson, J. Inorg. Biochem. 2012, 117, 220-229.
A. Nemirovski, Y. Kasherman, Y. Tzaraf, D. Gibson, J. Med.
Chem. 2007, 50, 5554-5556.
N. Ma, M. A. Digman, L. Malacrida, E. Gratton, Biomed. Opt.
Express 2016, 7, 2441-2452.
F. M. Pimenta, R. L. Jensen, T. Breitenbach, M. Etzerodt, P. R.
Ogilby, Photochem. Photobiol. 2013, 89, 1116-1126.
P. Gramatica, E. Papa, M. Luini, E. Monti, M. B. Gariboldi, M.
Ravera, E. Gabano, L. Gaviglio, D. Osella, J. Biol. Inorg. Chem.
[
[
1]
2]
J. A. Prescher, C. R. Bertozzi, Nat. Chem. Biol. 2005, 1, 13-21.
P. K. Sasmal, C. N. Streu, E. Meggers, Chem. Commun. 2013, 49,
[
[
37]
38]
1
581-1587.
[
[
3]
4]
T. Völker, F. Dempwolff, P. L. Graumann, E. Meggers, Angew.
Chem. Int. Ed. 2014, 53, 10536-10540.
A. M. Pérez-López, B. Rubio-Ruiz, V. Sebastián, L. Hamilton, C.
Adam, T. L. Bray, S. Irusta, P. M. Brennan, G. C. Lloyd-Jones, D.
Sieger, J. Santamaría, A. Unciti-Broceta, Angew. Chem. Int. Ed.
[
[
[
39]
40]
41]
2
017, 56, 12548-12552.
[
5]
J. T. Weiss, J. C. Dawson, K. G. Macleod, W. Rybski, C. Fraser, C.
Torres-Sánchez, E. E. Patton, M. Bradley, N. O. Carragher, A.
Unciti-Broceta, Nat. Commun. 2014, 5, 3277.
2
010, 15, 1157-1169.
[
[
6]
7]
R. M. Yusop, A. Unciti-Broceta, E. M. V. Johansson, R. M.
Sánchez-Martín, M. Bradley, Nat. Chem. 2011, 3, 239-243.
J. Clavadetscher, S. Hoffmann, A. Lilienkampf, L. Mackay, R. M.
Yusop, S. A. Rider, J. J. Mullins, M. Bradley, Angew. Chem. Int.
Ed. 2016, 55, 15662-15666.
[
[
[
8]
M. I. Sanchez, C. Penas, M. E. Vazquez, J. L. Mascareñas, Chem.
Sci. 2014, 5, 1901-1907.
M. Tomás-Gamasa, M. Martínez-Calvo, J. R. Couceiro, J. L.
Mascareñas, Nat. Commun. 2016, 7, 12538.
G. Y. Tonga, Y. Jeong, B. Duncan, T. Mizuhara, R. Mout, R. Das,
S. T. Kim, Y.-C. Yeh, B. Yan, S. Hou, V. M. Rotello, Nat. Chem.
9]
10]
2
015, 7, 597-603.
[
11]
S. Alonso-de Castro, E. Ruggiero, A. Ruiz-de-Angulo, E. Rezabal,
J. C. Mareque-Rivas, X. Lopez, F. Lopez-Gallego, L. Salassa,
Chem. Sci. 2017, 8, 4619-4625.
[
[
[
12]
13]
14]
L. Gong, Z. Lin, K. Harms, E. Meggers, Angew. Chem. Int. Ed.
2
010, 49, 7955-7957.
T. C. Johnstone, K. Suntharalingam, S. J. Lippard, Chem. Rev.
016, 116, 3436-3486.
2
F. Barragán, P. López-Senín, L. Salassa, S. Betanzos-Lara, A.
Habtemariam, V. Moreno, P. J. Sadler, V. Marchán, J. Am. Chem.
Soc. 2011, 133, 14098-14108.
[
15]
S. Betanzos-Lara, L. Salassa, A. Habtemariam, O. Novakova, A.
M. Pizarro, G. J. Clarkson, B. Liskova, V. Brabec, P. J. Sadler,
Organometallics 2012, 31, 3466-3479.
[
[
[
16]
17]
18]
S. Betanzos-Lara, L. Salassa, A. Habtemariam, P. J. Sadler,
Chem. Commun. 2009, 6622-6624.
A. Habtemariam, C. Garino, E. Ruggiero, S. Alonso-de Castro, C.
J. Mareque-Rivas, L. Salassa, Molecules 2015, 20, 7276-7291.
I. Infante, J. M. Azpiroz, N. G. Blanco, E. Ruggiero, J. M. Ugalde,
J. C. Mareque-Rivas, L. Salassa, J. Phys. Chem. C 2014, 118,
8
712-8721.
This article is protected by copyright. All rights reserved.