1258
K. Nadrah, M. Sollner Dolenc
LETTER
(4) Nakamura, H.; Sasaki, Y.; Uno, M.; Yoshikawa, T.; Asano,
T.; Ban, H. S.; Fukazawa, H.; Shibuya, M.; Uehara, Y.
Bioorg. Med. Chem. Lett. 2006, 16, 5127.
Table 1 Reaction Times and Yields
Entry Compound
Reaction time Yield (%)
(5) Stephens, C. E.; Tanious, E.; Kim, S.; Wilson, D. W.; Schell,
W. A.; Perfect, J. R.; Franzblau, S. G.; Boykin, D. W.
J. Med. Chem. 2001, 44, 1741.
NH2
NH
O
1
2
3
10 min
40 min
10 min
87
63
85
· HCl
(6) Roger, R.; Nielson, D. G. Chem. Rev. 1961, 61, 179.
(7) (a) Bredereck, H.; Gompper, R.; Seiz, H. Chem. Ber. 1957,
90, 1837. (b) Lage, U. W.; Schäfer, B.; Baucke, D.;
Buschmann, E.; Mack, H. Tetrahedron Lett. 1999, 40, 7067.
(8) Garigipati, R. S. Tetrahedron Lett. 1990, 31, 1969.
(9) (a) Eloy, F. Fortschr. Chem. Forsch. 1965, 4, 807.
(b) Moormann, A. E.; Wang, J. L.; Palmquist, K. E.; Promo,
M. A.; Snyder, J. S.; Scholten, J. A.; Massa, M. A.; Sikorski,
J. A.; Webber, R. K. Tetrahedron 2004, 60, 10907.
(c) Sendzik, M.; Hui, H. C. Tetrahedron Lett. 2003, 44,
8697.
(10) (a) Eloy, F.; Lenaers, R. Chem. Rev. 1962, 62, 155.
(b) Judkins, B. D.; Allen, D. G.; Cook, T. A.; Evans, B.;
Sardharwala, T. E. Synth. Commun. 1996, 26, 4351.
(c) Dener, J. M.; Wang, V. R.; Rice, K. D.; Gangloff, A. R.;
Kuo, E. Y.-L.; Newcomb, W. S.; Putnam, D.; Wong, M.
Bioorg. Med. Chem. Lett. 2001, 11, 2325. (d) Lepore, S. D.;
Schacht, A. L.; Wiley, M. R. Tetrahedron Lett. 2002, 43,
8777.
O
1
O
NH
· HCl
NH2
O
220
NH2
· HCl
HN
O
NH
3
O
NH
· HCl
HN
4
5
30 min
12 h
82
88
NH2
4
(11) Judkins, B. D.; Allen, D. G.; Cook, T. A.; Evans, B.;
Sardharwala, T. E. Synth. Commun. 1996, 26, 4351.
(12) Zierke, T.; Mack, H. Int. Patent, WO 0061574, 2000; Chem.
Abstr. 2000, 133, 282087.
(13) Anbazhagan, M.; Boykin, D. W.; Stephens, C. E. Synthesis
2003, 2467.
O
NH
· HCl
NH2
O
5
(14) Wiener, H.; Blum, J.; Sasson, Y. J. Org. Chem. 1991, 56,
4481.
(15) (a) Wiener, H.; Blum, J.; Sasson, Y. J. Org. Chem. 1991, 56,
6145. (b) Anwer, M. K.; Sherman, D. B.; Roney, J. G.;
Spatola, A. F. J. Org. Chem. 1989, 54, 1284.
(16) Anwer, M. K.; Spatola, A. F. Synthesis 1980, 929.
(17) (a) Anwer, M. K.; Spatola, A. F. Tetrahedron Lett. 1981, 22,
4369. (b) Anwer, M. K.; Spatola, A. F. J. Org. Chem. 1983,
48, 3503.
(18) Typical Procedure for Reduction of Amidoxime: The
parent amidoxime (1 mmol) was dissolved in a mixture of
glacial AcOH (1 mL) and potassium formate solution in
MeOH (10 mmol), followed by the addition of 10% Pd/C.
The mixture was stirred at r.t. until the reaction was
complete based on TLC. Isolation and purification were
performed as described in ref. 19 to yield pure amidine
hydrochloride.
equilibrium towards the formic acid, slowing down or
stopping the reaction entirely.
The reaction proceeds readily in commercial but not in
anhydrous solvents; no reaction took place in anhydrous
EtOH without the addition of water. A certain amount of
water is therefore essential for the reaction to take place.
In fact, Wiener et al.15 have demonstrated that water and
formate are adsorbed on the Pd/C catalyst, where hydro-
gen is formed by combination of a hydride ion originating
from formate and a proton from a water molecule. The re-
duction thus takes place on the catalyst surface.
We have described a simple and effective reduction of
amidoximes alone18 or preferably via an acylated interme-
diate,19 i.e. via the modified Judkins11 procedure. The
reactions take place in acidic media, preferably in acetic
acid, yielding amidine salts in high yields.
(19) Typical Procedure for Reduction of Amidoxime via the
Acylated Intermediate: Potassium formate was prepared in
situ from HCOOH (10 mmol) and K2CO3 (5 mmol) in
MeOH (1.5 mL). The parent amidoxime (1 mmol) was
dissolved in AcOH (1 mL) and Ac2O (1.1 mmol) was added
at r.t. After 5 min, potassium formate solution in MeOH was
added, followed by 10% Pd/C. The mixture was stirred at r.t.
until reaction was complete based on TLC. The solids were
filtered, washed with MeOH or EtOH, and the filtrate was
evaporated. The residue was dissolved in anhyd EtOH and
5 M HCl in anhyd EtOH (12 equiv) was then added. The
solids were filtered, washed with anhyd EtOH and the
filtrate was evaporated to yield pure amidine hydrochloride.
(20) Representative Spectroscopic Data for Compound 2: 1H
NMR (300 MHz, DMSO-d6): d = 3.92 (s, 3 H, Me), 7.78 (t,
J = 7.8 Hz, 1 H, ArH), 8.11 (d, J = 7.8 Hz, 1 H, ArH), 8.28
(d, J = 7.8 Hz, 1 H, ArH), 8.38 (s, 1 H, ArH), 9.37 (s, 2 H,
Acknowledgment
We would like to thank Mrs. D. Zalar for technical assistance and
Prof. Dr. R. Pain for many helpful comments.
References and Notes
(1) (a) Rewinkel, J. B. M.; Adang, A. E. P. Curr. Pharm. Des.
1999, 5, 1043. (b) Scarborough, R. M.; Gretler, D. D.
J. Med. Chem. 2000, 43, 3453.
(2) Sielecki, T. M.; Liu, J.; Mousa, S. A.; Racanelli, A. L.;
Hausner, E. A.; Wexler, R. R.; Olson, R. E. Bioorg. Med.
Chem. Lett. 2001, 11, 2201.
(3) Collins, J. L.; Shearer, B. G.; Oplinger, J. A.; Lee, S.;
Garvey, E. P.; Salter, M.; Dufry, C.; Burnette, T. C.; Furtine,
E. S. J. Med. Chem. 1998, 41, 2858.
+
NH2), 9.58 (s, 2 H, NH2 ). 13C NMR (300 MHz, DMSO-d6):
d = 166.1, 134.8, 133.7, 131.1, 130.5, 129.6, 53.5. HRMS:
m/z [M+] calcd for C9H10N2O2: 178.0742; found: 178.0750.
Synlett 2007, No. 8, 1257–1258 © Thieme Stuttgart · New York