C O M M U N I C A T I O N S
GPC analysis showed a broad peak corresponding to an Mw of 48
kDa (DPw ) 96, PDI ) 3.3) with respect to polystyrene. Dynamic
light scattering of 7n resulted in a hydrodynamic radius of 2.99 ( 0.36
nm. Assuming that 7n can be described as a random coil, with CH2Cl2
being a good solvent, this Rh value gives a radius of gyration of 6.13
( 0.74 nm (Rg/Rh ) 2.05),13 which translates into an Mw of 36 kDa
(DPw ) 72) with respect to poly(ferrocenyldimethylsilane).14
1H NMR spectra of 7n showed broad peaks relative to those of
the monomer 7, with some peaks exhibiting a rich fine structure.
For example, the tBu group para to gallium appears as a singlet (δ
1.32), whereas the tBu group ortho to gallium is split into 10 signals
(centered at δ 1.53). This ortho-tBu group is oriented toward the
polymer backbone and acts as a fine sensor for the tacticity of 7n.
As shown in Figure 1, the 10 peaks can be sorted into three groups
with 3, 4, and 3 singlets, respectively (see A, B, and C in Figure
1). Every Ga atom in polymer 7n is a stereogenic center, and
neighboring Ga atoms could have either the same or a different
chirality, leading to racemo or meso diads. For three repeat units,
three different arrangements are possible, which are illustrated in
Figure 1. The splitting of the signal of the ortho-tBu group into
the three groups A, B, and C is due to a triad sensitivity. The
approximate intensity ratio between those three groups is 1:2:1,
indicating that 7n is a polymer with a statistical distribution of
stereogenic centers; hence, signal B can be assigned to heterotactic
triads mr and rm. The fine structure in A, B, and C can be explained
by a further sensitivity toward pentads.
spontaneous ROP results in 7n. This behavior is reminiscent of the
chemistry of phospha- and stanna[1]ferrocenophanes.1b,c,16 Interest-
ingly, one of the two tBu groups of the ligand points toward the
polymer backbone and serves as a very sensitive probe of the
polymer stereochemistry.17 Polymer 7n is thermally robust and can
be purified and handled under ambient conditions, making it an
ideal candidate for incorporation into polymer based materials
offering an alternative to existing polyferrocenes. Future work will
focus on the isolation of monomers such as 7, toward the realization
of well-defined poly(ferrocenylgallanes) via living ROP methodologies.
Acknowledgment. Dedicated to Prof. Peter Paetzold (RWTH
Aachen) on the occasion of his 75th birthday. We thank Prof. Ian
Manners (University of Bristol) for sabbatical support and helpful
discussions and NSERC of Canada (J.B.G. for a PDF; J.M. for a
DG) and EPSRC of the United Kingdom (A.S.) for support.
Supporting Information Available: Experimental section for 5, 6,
1
and 7n; H NMR spectrum of 7; spectra and diagrams for 7n (NMR,
GPC, DLS, WAXS, DSC, TGA, CV). This material is available free
References
(1) (a) Foucher, D. A.; Tang, B.-Z.; Manners, I. J. Am. Chem. Soc. 1992, 114,
6246–6248. (b) Herbert, D. E.; Mayer, U. F. J.; Manners, I. Angew. Chem.,
Int. Ed. 2007, 46, 5060–5081. (c) Bellas, V.; Rehahn, M. Angew. Chem.,
Int. Ed. 2007, 46, 5082–5104.
(2) (a) Korczagin, I.; Lammertink, R. G. H.; Hempenius, M. A.; Golze, S.;
Vancso, G. J. Ordered Polymeric Nanostructures at Surfaces; Springer:
2006; Vol. 200, pp 91-117. (b) Lu, J.; Chamberlin, D.; Rider, D. A.; Liu,
M. Z.; Manners, I.; Russell, T. P. Nanotechnology 2006, 17, 5792–5797.
(c) Chuang, V. P.; Gwyther, J.; Mickiewicz, R. A.; Manners, I.; Ross, C. A.
Nano Lett. 2009, 9, 4364–4369.
(3) (a) MacLachlan, M. J.; Ginzburg, M.; Coombs, N.; Coyle, T. W.; Raju, N. P.;
Greedan, J. E.; Ozin, G. A.; Manners, I. Science 2000, 287, 1460–1463. (b)
Lastella, S.; Mallick, G.; Woo, R.; Karna, S. P.; Rider, D. A.; Manners, I.;
Jung, Y. J.; Ryu, C. Y.; Ajayan, P. M. J. Appl. Phys. 2006, 99, 024302.
(4) (a) Arsenault, A. C.; Puzzo, D. P.; Manners, I.; Ozin, G. A. Nat. Photonics
2007, 1, 468–472. (b) Puzzo, D. P.; Arsenault, A. C.; Manners, I.; Ozin,
G. A. Angew. Chem., Int. Ed. 2009, 48, 943–947.
(5) Peter, M.; Lammertink, R. G. H.; Hempenius, M. A.; Vancso, G. J.
Langmuir 2005, 21, 5115–5123.
(6) Ma, Y. J.; Dong, W. F.; Hempenius, M. A.; Mo¨hwald, H.; Vancso, G. J.
Nat. Mater. 2006, 5, 724–729.
(7) (a) Wang, X. S.; Guerin, G.; Wang, H.; Wang, Y. S.; Manners, I.; Winnik,
M. A. Science 2007, 317, 644–647. (b) Ga¨dt, T.; Ieong, N. S.; Cambridge,
G.; Winnik, M. A.; Manners, I. Nat. Mater. 2009, 8, 144–150.
(8) Rowan, S. J. Nat. Mater. 2009, 8, 89–91.
Figure 1. Illustration of different triads in 7n (the NMe2 group at the aryl
ligand is omitted for clarity). 1H NMR signal of the ortho-tBu group of 7n
exhibiting pentad resolution (intensity ratio A/B/C ≈ 1:2:1).
(9) (a) Schachner, J. A.; Lund, C. L.; Quail, J. W.; Mu¨ller, J. Organometallics
2005, 24, 785–787. (b) Schachner, J. A.; Lund, C. L.; Quail, J. W.; Mu¨ller,
J. Organometallics 2005, 24, 4483–4488. (c) Lund, C. L.; Schachner, J. A.;
Quail, J. W.; Mu¨ller, J. Organometallics 2006, 25, 5817–5823. (d) Lund,
C. L.; Schachner, J. A.; Quail, J. W.; Mu¨ller, J. J. Am. Chem. Soc. 2007,
129, 9313–9320. (e) Schachner, J. A.; Tockner, S.; Lund, C. L.; Quail,
J. W.; Rehahn, M.; Mu¨ller, J. Organometallics 2007, 26, 4658–4662.
(10) For recent advances in boron-bridged polyferrocenes, see: (a) Scheibitz,
M.; Li, H. Y.; Schnorr, J.; Perucha, A. S.; Bolte, M.; Lerner, H. W.; Ja¨kle,
F.; Wagner, M. J. Am. Chem. Soc. 2009, 131, 16319–16329. (b) Heilmann,
J. B.; Scheibitz, M.; Qin, Y.; Sundararaman, A.; Ja¨kle, F.; Kretz, T.; Bolte,
M.; Lerner, H. W.; Holthausen, M. C.; Wagner, M. Angew. Chem., Int.
Ed. 2006, 45, 920–925. (c) Heilmann, J. B.; Qin, Y.; Ja¨kle, F.; Lerner,
H. W.; Wagner, M. Inorg. Chim. Acta 2006, 359, 4802–4806.
(11) (a) Braunschweig, H.; Burschka, C.; Clentsmith, G. K. B.; Kupfer, T.;
Radacki, K. Inorg. Chem. 2005, 44, 4906–4908. (b) Schachner, J. A.;
Orlowski, G. A.; Quail, J. W.; Kraatz, H.-B.; Mu¨ller, J. Inorg. Chem. 2006,
45, 454–459. (c) Lund, C. L.; Schachner, J. A.; Burgess, I. J.; Quail, J. W.;
Schatte, G.; Mu¨ller, J. Inorg. Chem. 2008, 47, 5992–6000.
An extension from three to five repeat units results in 16 possible
pentads, from which 10 are distinguishable.15 In case of a polymer
with a statistical distribution of stereogenic centers, isotactic and
syndiotactic triads both result in four pentads from which three are
distinguishable giving a distribution ratio of 1:2:1 (A and C in
Figure 1). In contrast, the heterotactic triad results in eight pentads
with four being distinguishable giving a distribution ratio of 2:2:
2:2 (B in Figure 1). Expectedly, the signal pattern of the ferrocene
units is more complex than that of the ortho-tBu group. The Cp
protons could show a diad or tetrad sensitivity, with the latter being
the pendant to the pentad sensitivity of the tBu group. A diad
sensitivity in the form of two sets of four Cp signals in an
(12) Yoshifuji, M.; Kamijo, K.; Toyota, K. Tetrahedron Lett. 1994, 35, 3971–
3974.
1
approximately 1:1 intensity ratio can be clearly seen in H NMR
(13) Burchard, W. AdV. Polym. Sci. 1999, 143, 113–194.
spectra of 7n. Some of the individual peaks show an additional fine
structure, but a full resolution into tetrads was not observed. The
13C{1H} NMR spectrum of 7n is similarly complex as the proton
spectrum. For example, while the tertiary carbon atom of the para-
tBu group gives one resonance only, that of the ortho-tBu group
gives three signals (triad resolution).
(14) Massey, J. A.; Kulbaba, K.; Winnik, M. A.; Manners, I. J. Polym. Sci.,
Part B: Polym. Phys. 2000, 38, 3032–3041.
(15) The splitting of triads into 16 pentads can be illustrated as follows
(indistinguishable pentads shown in parentheses): isotactic triad: mmmm,
(mmmr, rmmm), rmmr; heterotactic triad: (mmrm, mrmm), (mmrr, rrmm),
(rmrm, mrmr), (rmrr, rrmr); syndiotactic triad: mrrm, (mrrr, rrrm), rrrr.
(16) Rulkens, R.; Lough, A. J.; Manners, I. Angew. Chem., Int. Ed. 1996, 35,
1805–1807.
In summary, all attempts to synthesize the strained [1]ferro-
(17) Poly(ferrocenylmethylphenylsilane) showing a triad resolution is described
in: Rasburn, J.; Foucher, D. A.; Reynolds, W. F.; Manners, I.; Vancso,
G. J. Chem. Commun. 1998, 843–844.
cenophane 7 resulted in the isolation of the air-stable poly(ferro-
1
cenylgallane) 7n. However, H NMR spectroscopy revealed that
the targeted monomer is first formed and one can assume that a
JA910648K
9
J. AM. CHEM. SOC. VOL. 132, NO. 6, 2010 1795