Published on Web 03/28/2002
Cyclopropylcarbinyl-Type Ring Openings. Reconciling the
Chemistry of Neutral Radicals and Radical Anions
‡
J. Paige Stevenson, Woodward F. Jackson, and J. M. Tanko*
Contribution from the Department of Chemistry, Virginia Polytechnic Institute and
State UniVersity, Blacksburg, Virginia 24061
Received December 5, 2000. Revised Manuscript Received September 14, 2001
Abstract: Cyclopropylcarbinyl f homoallyl and related rearrangements of radical ions (a) are frequently
used as mechanistic “probes” to detect the occurrence of single electron transfer in chemical and biochemical
processes, (b) provide the basis for mechanism-based drug design, and (c) are important tools in organic
synthesis. Unfortunately, these rearrangements are poorly understood, especially with respect to the effect
of substrate structure on reactivity. Frequently, researchers assume that the same factors which govern
the reactivity of neutral free radicals also pertain to radical ions. The results reported herein demonstrate
that in some cases structure-reactivity trends in radical ion rearrangements are very different from neutral
radicals. For radical ions, delocalizations of both charge and spin are important factors governing their
reactivity.
Introduction
process (e.g., ring opening radical cations generated from
cyclopropyl arenes). In most cases, only a meager amount of
2
9
A rigorous understanding of the mechanism and kinetics
associated with the unimolecular rearrangements of neutral free
radicals has been achieved in the past two decades. Rate
constants and, more significantly, activation parameters have
become available for rearrangements of many types of neutral
radicals. As such, these processes have proven enormously
valuable as probes for radical intermediates (i.e., with ap-
propriately designed substrates, the detection of rearranged
products signals intermediacy of free radicals) and as radical
clocks (i.e., the unimolecular rearrangement is used as a
molecular level “stopwatch” to time competing, bimolecular
(
(
(
3) Maslak, P.; Chapman, W. H., Jr.; Vallombroso, T. M.; Watson, B. A. J.
Am. Chem. Soc. 1995, 117, 12380-9.
4) Maslak, P.; Narvaez, J. N.; Vallombroso, T. M., Jr. J. Am. Chem. Soc.
1
995, 117, 12373-9.
5) Maslak, P.; McGuinn, J. M. Chem. Commun. (Cambridge) 1999, 2467-
2468.
(6) Dockery, K. P.; Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.; Gould, I. R.;
Todd, W. P. J. Am. Chem. Soc. 1997, 119, 1876-1883.
(
7) Freccero, M.; Pratt, A.; Albini, A.; Long, C. J. Am. Chem. Soc. 1998, 120,
284-297.
(
8) Andersen, M. L.; Wayner, D. D. M. Acta Chem. Scand. 1999, 53, 830-
836.
(9) Carra, C.; Fiussello, F.; Tonachini, G. J. Org. Chem. 1999, 64, 3867-
3877.
(
10) Donkers, R. L.; Maran, F.; Wayner, D. D. M.; Workentin, M. S. J. Am.
1
processes of the radical). An understanding of this chemistry
has led to well-established synthetic methods based upon neutral
radical rearrangements.
Chem. Soc. 1999, 121, 7239-7248.
(
(
11) Wiest, O. J. Phys. Chem. A 1999, 103, 7907-7911.
12) Roth, H. D. Acc. Chem. Res. 1987, 20, 343-50.
(13) Roth, H. D.; Weng, H.; Herbertz, T. Tetrahedron 1997, 53, 10051-10070.
(
(
14) Dinnocenzo, J. P.; Conlon, D. A. J. Am. Chem. Soc. 1988, 110, 2324-6.
15) Dinnocenzo, J. P.; Conlon, D. A. Tetrahedron Lett. 1995, 36, 7415-18.
There have been numerous studies dealing with bond cleav-
age in radical ions. The most common and perhaps best
(16) Weng, H.; Sheik, Q.; Roth, H. D. J. Am. Chem. Soc. 1995, 117, 10655-
6
1.
17) Hasegawa, E.; Ishiyama, K.; Horaguchi, T.; Shimizu, T. J. Org. Chem.
991, 56, 1631-1635.
18) Hasegawa, E.; Ishiyama, K.; Fujita, T.; Kato, T.; Abe, T. J. Org. Chem.
997, 62, 2396-2400.
(19) Yeh, S.-R.; Falvey, D. E. J. Am. Chem. Soc. 1991, 113, 8557-8558.
20) Robbins, R. J.; Falvey, D. E. J. Org. Chem. 1993, 58, 3916-3616.
(21) Sastry, G. N.; Bally, T.; Hrouda, V.; Carsky, P. J. Am. Chem. Soc. 1998,
2
understood examples of these are dissociative processes, in
(
(
1
which two fragments, a neutral radical and an ion are generated
•
-
from the parent radical ion (e.g., for a radical anion, A-B
A + B or A + B ).
f
1
•
-
-
• 3-11
There are fewer examples of bond
(
cleavage in radical ions which can be classified as rearrange-
ments, i.e., bond breaking leads to a single species, a distonic
120, 9323-9334.
(
22) Barone, V.; Rega, N.; Bally, T.; Sastry, G. N. J. Phys. Chem. A 1999, 103,
radical ion (in which the charge and spin reside on the same
217-219.
species).12-28
(23) Maslak, P.; Varadarajan, S.; Burkey, J. D. J. Org. Chem. 1999, 64, 8201-
8209.
Compared to neutral free radicals, our understanding of the
mechanism and kinetics associated with rearrangements of
radical ions, and consequently, their use as mechanistic probes
or clocks, is in the dark ages. Sometimes the “rearrangement”
of a radical ion is more complex than a simple, first-order
(24) Oxgaard, J.; Wiest, O. J. Am. Chem. Soc. 1999, 121, 11531-11537.
(
25) Ikeda, H.; Nakamura, T.; Miyashi, T.; Goodman, J. L.; Akiyama, K.; Tero-
Kubota, S.; Houmam, A.; Wayner, D. D. M. J. Am. Chem. Soc. 1998, 120,
5832-5833.
(
26) Ikeda, H.; Minegishi, T.; Abe, H.; Konno, A.; Goodman, J. L.; Miyashi,
T. J. Am. Chem. Soc. 1998, 120, 87-95.
(27) Adam, W.; Heidenfelder, T. Chem. Soc. ReV. 1999, 28, 359-365.
(
28) Bally, T.; Bernhard, S.; Matzinger, S.; Roulin, J.-L.; Sastry, G. N.;
Truttmann, L.; Zhu, Z.; Marcinek, A.; Adamus, J.; Kaminski, R.; Gebicki,
J.; Williams, F.; Chen, G.-F.; Fulscher, M. P. Chem. Eur. J. 2000, 6, 858-
868.
*
Address correspondence to this author. E-mail: jtanko@vt.edu.
Formerly J. Paige Phillips.
‡
(
(
1) Griller, D.; Ingold, K. U. Acc. Chem. Res. 1980, 13, 317-323.
2) Sav e´ ant, J. M. Acc. Chem. Res. 1993, 26, 455-461.
(29) Dinnocenzo, J. P.; Simpson, T. R.; Zuilhof, H.; Todd, W. P.; Heinrich, T.
J. Am. Chem. Soc. 1997, 119, 987-993.
10.1021/ja0041831 CCC: $22.00 © 2002 American Chemical Society
J. AM. CHEM. SOC. 2002, 124, 4271-4281
9
4271