Cerium(III) UV-Emitting 2D-Coordination Polymer
ware package.[25] Multi-scan absorption via SADABS was applied.[26] [3] M. Kurmoo, Chem. Soc. Rev. 2009, 38, 13530.
[
4] a) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk,
Chem. Soc. Rev. 2009, 38, 1330; b) Y. Cui, Y. Yue, G. Qian,
B. Chen, Chem. Rev. 2012, 112, 1126; c) J. Heine, K. Müller-
Buschbaum, Chem. Soc. Rev. 2013, 42, 9232; d) J. Rocha, L. D.
Carlos, F. A. A. Paz, D. Ananias, Chem. Soc. Rev. 2011, 40, 926;
e) L. V. Meyer, F. Schönfeld, K. Müller-Buschbaum, Chem. Com-
mun. 2014, 50, 8093.
Further data processing was done with XPREP. Structure solution was
[
27]
achieved with the Patterson method
using SHELXS-97. The com-
pound crystallizes in the monoclinic space group C2/m. All non-
hydrogen atoms were refined anisotropically by least-squares tech-
niques (SHELXl-97).[ All hydrogen atoms were calculated into pre-
set positions with isotropic thermal parameters adjusted to 1.2 of the
corresponding carbon atom. The crystallographically independent pyr-
idyl rings of the coordinated 4,4Ј-bipyridine molecules show rotational
28]
[
5] A. U. Czaja, N. Trukhan, U. Müller, Chem. Soc. Rev. 2009, 38,
1284.
disorder along their longitudinal axis, which was refined in two distinct [6] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne,
positions for each ring; the referring C20–C24 were thereby refined
J. T. Hupp, Chem. Rev. 2012, 112, 1105.
isotropically. Furthermore, the intercalated pyridine molecule exhibits [7] A. Zurawski, M. Mai, D. Baumann, C. Feldmann, K. Müller-
positional disorder along the longitudinal axis, which was refined by
two isotropic benzene rings without hydrogen atoms. Lower symmetry
does not overcome the disorder, which may be the result of a domain
Buschbaum, Chem. Commun. 2011, 47, 496.
8] a) V. S. Dhanya, M. R. Sudarsanakumar, S. Suma, S. W. Ng,
[
M. S. Augustine, S. M. Roy, Inorg. Chem. Commun. 2013, 35,
140; b) C. A. F. de Oliveira, F. F. da Silva, I. Malvestiti, V. Rodri-
twinning. Integrity of symmetry was checked and no higher symmetry
gues dos S. Malta, J. D. L. Dutra, N. B. da Costa Jr., R. O. Freire,
S. Alves Jr., J. Mol. Struct. 2013, 1041, 61; c) S.-F. Weng, Y.-H.
Wang, C.-S. Lee, J. Solid State Chem. 2012, 188, 77; d) Y. Gao,
Y. Xu, Z. Han, C. Li, F. Cui, Y. Chi, C. Hu, J. Solid State Chem.
could be found.[
Table 1.
20]
For further crystallographic information see
Crystallographic data (excluding structure factors) for the structure in
this paper have been deposited with the Cambridge Crystallographic
Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK.
Copies of the data can be obtained free of charge on quoting the de-
pository number CCDC-988091 (Fax: +44-1223-336-033; E-Mail:
deposit@ccdc.cam.ac.uk, http://www.ccdc.cam.ac.uk).
2010, 183, 1000.
[
[
[
9] A. Zurawski, J.-C. Rybak, L. V. Meyer, P. R. Matthes, V. Ste-
panenko, N. Dannenbauer, F. Würthner, K. Müller-Buschbaum,
Dalton Trans. 2012, 41, 4067.
10] a) C. J. Höller, K. Müller-Buschbaum, Inorg. Chem. 2008, 47,
10141; b) C. J. Höller, P. R. Matthes, M. Adlung, C. Wickleder,
2
K. Müller-Buschbaum, Eur. J. Inorg. Chem. 2012, 5479.
11] a) C. J. Höller, P. R. Matthes, J. Beckmann, K. Müller-Busch-
baum, Z. Anorg. Allg. Chem. 2010, 636, 395; b) C. J. Höller, M.
Mai, C. Feldmann, K. Müller-Buschbaum, Dalton Trans. 2010,
ϱ
2 6 4
[Ce Cl (bipy) ]·py was also investigated on powder samples in sealed
Lindeglas capillaries on a BRUKER AXS D8 Discover powder X-
ray diffractometer, equipped with Lnyx-Eye detector in transmission
geometry. X-ray radiation (Cu-Kα1; λ = 154.06 pm) was focused with
a Goebel mirror, Cu-Kα2 radiation was eliminated by the application
of a Ni absorber. Diffraction patterns were recorded and analyzed using
the BRUKER AXS Diffrac-Suite. Refinement of lattice parameters,
39, 461; c) P. R. Matthes, C. J. Höller, M. Mai, J. Heck, S. J.
Sedlmaier, S. Schmiechen, C. Feldmann, W. Schnick, K. Müller-
Buschbaum, J. Mater. Chem. 2012, 22, 10179.
[12] K. Binnemans, Chem. Rev. 2009, 109, 4283.
3
atom positions and content of CeCl was achieved via the Rietveld- [13] a) J.-S. Li, B. Neumüller, K. Dehnicke, Z. Anorg. Allg. Chem.
method with TOPAS,[ using the fundamental parameters approach
as reflection profiles (convolution of appropriate source emission pro-
files with axial instrument contributions as well as crystallite micro-
structure effects).
21]
2002, 628, 45–50; b) W. J. Evans, D. G. Giarikos, J. W. Ziller,
Organometallics 2001, 20, 5751; c) G. B. Deacon, N. M. Scott,
B. W. Skelton, A. H. White, Z. Anorg. Allg. Chem. 2006, 632,
1945.
[
14] S. Kano, H. Nakano, M. Kojima, N. Baba, K. Nakajima, Inorg.
Excitation and emission spectra were recorded with a HORIBA Jobin
Yvon Spex Fluorolog 3 spectrometer equipped with a 450 W Xe-lamp,
double grated excitation and emission monochromators and a photo
multiplier tube (R928P) at room temperature using the FluorEssence
software. Excitation spectra were corrected for the spectral distribution
of the lamp intensity using a photodiode reference detector. Addition-
ally, both excitation and emission spectra were corrected for the spec-
tral response of the monochromators and the detector using correction
spectra provided by the manufacturer. All samples were investigated
as solids in spectroscopically pure quartz cuvettes in front face mode
at room temperature.
Chim. Acta 2003, 349, 6.
[15] J. Lhoste, N. Henry, T. Loiseau, F. Abraham, Polyhedron 2011,
30, 1289.
16] V. A. Blatov, A. P. Shevchenko, TOPOS 4.0, 2011.
17] P. R. Matthes, J. Nitsch, A. Kuzmanoski, C. Feldmann, T. B.
Marder, K. Müller-Buschbaum, Chem. Eur. J. 2013, 19, 17369.
18] D. Sun, L.-L. Han, S. Yuan, Y.-K. Deng, M.-Z. Xu, D.-F. Sun,
Cryst. Growth Des. 2013, 13, 377.
[
[
[
[
19] K. M. Blake, L. L. Johnson, J. H. Nettleman, R. M. Supkowski,
R. L. LaDuca, CrystEngComm 2010, 12, 1927.
[
[
20] A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7–13.
21] A. Coelho, V. TOPAS-ACADEMIC, Coelho Software, Brisbane,
Australia, 2007.
Acknowledgements
We gratefully acknowledge the Deutsche Forschungsgemeinschaft for
supporting this work and the Evangelisches Studienwerk Villigst e.V.
for Ph.D. scholarship funding P. R. Matthes.
[22] A. S. Voloshinovskii, V. V. Visovskyy, G. B. Stryganyuk, A. S.
Pushak, T. S. Malyy, O. T. Antonyak, Z. A. Khapko, J. Phys. Con-
dens. Matter 2008, 20, 325218.
[23] S. I. Weissman, J. Chem. Phys. 1942, 10, 214.
[24] G. Meyer, Inorg. Synth. 1989, 25, 146.
[25] Bruker, SMART Apex Suite 2001, Bruker AXS Inc., Madison,
Wisconsin, USA.
References
[
26] Bruker, SADABS 2001, Bruker AXS Inc., Madison, Wisconsin,
USA.
[
1] S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia-Martinez,
S. Kitagawa, L. Öhrstöm, M. O’Keeffe, M. P. Suh, J. Reedijk,
Pure Appl. Chem. 2013, 85, 1715.
[27] A. L. Patterson, Z. Kristallogr. A 1935, 90, 517.
[28] G. M. Sheldrick, Acta Crystallogr., Sect. A 2007, 64, 112.
[
2] a) S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. 2004, 116,
2388–2430; b) S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem.
Received: August 6, 2014
Published Online: October 9, 2014
Int. Ed. 2004, 43, 2334.
Z. Anorg. Allg. Chem. 2014, 2847–2851
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
www.zaac.wiley-vch.de
2851