Job/Unit: O21627
/KAP1
Date: 02-05-13 16:27:04
Pages: 10
Strain-Promoted Alkyne-Azide Cycloadditions
[8]
R. B. Turner, A. D. Jarrett, P. Goebel, B. J. Mallon, J. Am.
Chem. Soc. 1973, 95, 790–792.
N. J. Agard, J. A. Prescher, C. R. Bertozzi, J. Am. Chem. Soc.
2004, 126, 15046–15047.
J. M. Baskin, C. R. Bertozzi, QSAR Comb. Sci. 2007, 26, 1211–
1219.
J. Dommerholt, S. Schmidt, R. P. Temming, L. J. A. Hendriks,
F. P. J. T. Rutjes, J. C. M. van Hest, D. J. Lefeber, P. Friedl, F. L.
van Delft, Angew. Chem. 2010, 122, 9612; Angew. Chem. Int.
Ed. 2010, 49, 9422–9425.
P. König, J. Zountsas, K. Bleckmann, H. Meier, Chem. Ber.
1983, 116, 3580–3590.
X. Ning, J. Guo, M. A. Wolfert, G. J. Boons, Angew. Chem.
2008, 120, 2285; Angew. Chem. Int. Ed. 2008, 47, 2253–2255.
E. M. Sletten, H. Nakamura, J. C. Jewett, R. Bertozzi Carolyn,
J. Am. Chem. Soc. 2010, 132, 11799–11805.
M. F. Debets, S. S. van Berkel, S. Schoffelen, F. P. J. T. Rutjes,
J. C. M. van Hest, F. L. van Delft, Chem. Commun. 2010, 46,
97–99.
A. Kuzmin, A. A. Poloukhtine, M. A. Wolfert, V. V. Popik,
Bioconjugate Chem. 2010, 21, 2076–2085.
J. C. Jewett, E. M. Sletten, C. R. Bertozzi, J. Am. Chem. Soc.
2010, 132, 3688–3690.
X. Ning, R. P. Temming, J. Dommerholt, J. Guo, D. B. Ania,
M. F. Debets, M. A. Wolfert, G. J. Boons, F. L. Van Delft, An-
gew. Chem. 2010, 122, 3129; Angew. Chem. Int. Ed. 2010, 49,
3065–3068.
calculation of LUMO values of novel cyclooctynes on these
machines is a rapid and easily available method to obtain
an initial valuable estimate of their reaction kinetics in
strain-promoted cycloadditions prior to committing to the
development of a synthetic route and actually preparing
them.
[9]
[10]
[11]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedure for the synthesis of 1 and allyl azide.
Determination of rate constants of 1 with benzyl azide. Competi-
tion experiment procedure of 1 or 3 with benzyl azide and allyl
azide. Plots of Ea (MP2) vs. log rate, TS conformation of 9 and 10,
Ea (SCS-MP2), in: MeOH vs. log rate, Ea (SCS-MP2) vs. cyclooc-
tyne distortion energies, Ea (SCS-MP2) vs. cyclooctyne EHOMO
(MP2), Ea (SCS-MP2) vs. allyl azide EHOMO (MP2), Ea (SCS-MP2)
vs. cyclooctyne ELUMO (B3LYP), and ELUMO (M06-2X), (SCS-
MP2) vs. EHOMO(azide) – EHOMO(cyclooctyne), Table with MO energies
of allyl azide and benzyl azide in the TS with compounds 1–10,
step-by-step guideline for the calculation of cyclooctyne rate values.
[12]
[13]
[14]
[15]
[16]
[17]
[18]
Acknowledgments
This work is co-financed via the program management Euregio
Rhein-Waal by the INTERREG IV, A Germany–Netherlands pro-
gram through EU funding from the European Regional Develop-
ment Fund (ERDF), the Ministry for Economic 491 Affairs, En-
ergy, Building, Housing and Transport of the German Federate
State of North-Rhine Westphalia and the Dutch Ministry of Econ-
omic Affairs and the Province of Gelderland.
[19]
[20]
D. H. Ess, G. O. Jones, K. N. Houk, Org. Lett. 2008, 10, 1633–
1636.
F. Schoenebeck, D. H. Ess, G. O. Jones, K. N. Houk, J. Am.
Chem. Soc. 2009, 131, 8121–8133.
R. D. Bach, J. Am. Chem. Soc. 2009, 131, 5233–5243.
K. Chenoweth, D. Chenoweth, W. A. Goddard, Org. Biomol.
Chem. 2009, 7, 5255–5258.
[21]
[22]
[23]
[24]
[25]
B. Gold, N. E. Shevchenko, N. Bonus, G. B. Dudley, I. V. Ala-
bugin, J. Org. Chem. 2012, 77, 75–89.
[1] a) T. K. Tiefenbrunn, P. E. Dawson, Biopolymers 2010, 94, 95–
106; b) B. S. Sumerlin, A. P. Vogt, Macromolecules 2010, 43, 1–
13; c) J. C. Jewett, C. R. Bertozzi, Chem. Soc. Rev. 2010, 39,
1272–1279; d) M. F. Debets, C. W. J. van der Doelen, F. P. J. T.
Rutjes, F. L. van Delft, ChemBioChem 2010, 11, 1168–1184; e)
J. M. Baskin, C. R. Bertozzi, Aldrichim. Acta 2010, 43, 15–23;
f) E. M. Sletten, C. R. Bertozzi, Angew. Chem. 2009, 121, 7108;
Angew. Chem. Int. Ed. 2009, 48, 6974–6998; g) C. R. Becer, R.
Hoogenboom, U. S. Schubert, Angew. Chem. 2009, 121, 4998;
Angew. Chem. Int. Ed. 2009, 48, 4900–4908; h) J. A. Prescher,
C. R. Bertozzi, Nature Chem. Biol. 2005, 1, 13–21.
[2] a) R. Huisgen, Angew. Chem. 1963, 75, 604; Angew. Chem. Int.
Ed. Engl. 1963, 2, 565–598; b) C. W. Tornøe, C. Christensen,
M. Meldal, J. Org. Chem. 2002, 67, 3057.
[3] a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless,
Angew. Chem. 2002, 114, 2708; Angew. Chem. Int. Ed. 2002,
41, 2596–2599; b) H. C. Kolb, M. G. Finn, K. B. Sharpless,
Angew. Chem. 2001, 113, 2056; Angew. Chem. Int. Ed. 2001,
40, 2004–2021.
C. G. Gordon, J. L. Mackey, J. C. Jewett, E. M. Sletten, K. N.
Houk, C. R. Bertozzi, J. Am. Chem. Soc. 2012, 134, 9199–9208.
a) W. A. van der Linden, N. Li, S. Hoogendoorn, M. Ruben,
M. Verdoes, J. Guo, G. J. Boons, G. A. van der Marel, B. I.
Florea, H. S. Overkleeft, Bioorg. Med. Chem. 2012, 20, 662–
666; b) P. Van Delft, N. J. Meeuwenoord, S. Hoogendoorn, J.
Dinkelaar, H. S. Overkleeft, G. A. Van Der Marel, D. V. Filip-
pov, Org. Lett. 2010, 12, 5486–5489; c) C. S. McKay, J. A.
Blake, J. Cheng, D. C. Danielson, J. P. Pezacki, Chem. Com-
mun. 2011, 47, 10040–10042; d) N. E. Mbua, J. Guo, M. A.
Wolfert, R. Steet, G. J. Boons, ChemBioChem 2011, 12, 1912–
1921; e) I. S. Marks, J. S. Kang, B. T. Jones, K. J. Landmark,
A. J. Cleland, T. A. Taton, Bioconjugate Chem. 2011, 22, 1259–
1263; f) I. Singh, F. Heaney, Chem. Commun. 2011, 47, 2706–
2708; g) J. C. M. Van Hest, F. L. Van Delft, ChemBioChem
2011, 12, 1309–1312; h) F. Friscourt, P. A. Ledin, N. E. Mbua,
H. R. Flanagan-Steet, M. A. Wolfert, R. Steet, G.-J. Boons, J.
Am. Chem. Soc. 2012, 134, 5381–5389; i) P. van Delft, E.
van Schie, N. J. Meeuwenoord, H. S. Overkleeft, G. A.
van der Marel, D. V. Filippov, Synthesis 2011, 2724–2732; j)
K. N. Jayaprakash, C. G. Peng, D. Butler, J. P. Varghese, M. A.
Maier, K. G. Rajeev, M. Manoharan, Org. Lett. 2010, 12,
5410–5413; k) K. W. Dehnert, B. J. Beahm, T. T. Huynh, J. M.
Baskin, S. T. Laughlin, W. Wang, P. Wu, S. L. Amacher, C. R.
Bertozzi, ACS Chem. Biol. 2011, 6, 548–552; l) N. J. Baumh-
over, M. E. Martin, S. G. Parameswarappa, K. C. Kloepping,
M. S. O’Dorisio, F. C. Pigge, M. K. Schultz, Bioorg. Med.
Chem. Lett. 2011, 21, 5757–5761; m) E. M. Sletten, C. R.
Bertozzi, Acc. Chem. Res. 2011, 44, 666–676; n) M. Shel-
bourne, X. Chen, T. Brown, A. H. El-Sagheer, Chem. Commun.
2011, 47, 6257–6259; o) I. Singh, C. Freeman, F. Heaney, Eur.
J. Org. Chem. 2011, 6739–6746; p) H. Stoeckmann, A. A.
Neves, S. Stairs, H. Ireland-Zecchini, K. M. Brindle, F. J.
Leeper, Chem. Sci. 2011, 2, 932–936; q) V. Bouvet, M. Wuest,
[4] M. E. Letelier, S. Sánchez-Jofré, L. Peredo-Silva, J. Cortés-
Troncoso, P. Aracena-Parks, Chem.-Biol. Interact. 2010, 188,
220–227.
[5] a) S. T. Laughlin, C. R. Bertozzi, ACS Chem. Biol. 2009, 4,
1068–1072; b) J. M. Baskin, K. W. Dehnert, S. T. Laughlin,
S. L. Amacher, C. R. Bertozzi, Proc. Natl. Acad. Sci. USA
2010, 107, 10360–10365; c) S. T. Laughlin, J. M. Baskin, S. L.
Amacher, C. R. Bertozzi, Science 2008, 320, 664–667; d) J. M.
Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang,
I. A. Miller, A. Lo, J. A. Codelli, C. R. Bertozzi, Proc. Natl.
Acad. Sci. USA 2007, 104, 16793–16797; e) S. T. Laughlin, N. J.
Agard, J. M. Baskin, I. S. Carrico, P. V. Chang, A. S. Ganguli,
M. J. Hangauer, A. Lo, J. A. Prescher, C. R. Bertozzi, Methods
Enzymol. 2006, 415, 230–250.
[6] A. T. Blomquist, L. H. Liu, J. Am. Chem. Soc. 1953, 75, 2153–
2154.
[7] G. Wittig, A. Krebs, Chem. Ber. 1961, 94, 3260–3275.
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
9