Journal of the American Chemical Society
Communication
Scheme 4. Substrate Scope for Cu-Mediated Fluorination of
Aryl Trifluoroborates
REFERENCES
■
a
(
1) (a) Jeschke, P. Pest Manage. Sci. 2010, 66, 10. (b) Purser, S.;
Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37,
20. (c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (d) Jeschke, P.
ChemBioChem 2004, 5, 570.
2) (a) Balz, G.; Schiemann, G. Ber. Dtsch. Chem. Ges. 1927, 60, 1186.
b) Barnette, W. E. J. Am. Chem. Soc. 1984, 106, 452. (c) Differring, E.;
3
(
(
Wehrli, M. Tetrahedron Lett. 1991, 32, 3819. (d) Yamada, S.;
Gavryushin, A.; Knochel, P. Angew. Chem., Int. Ed. 2010, 49, 2215.
(
2
e) Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed.
010, 49, 2219.
3) (a) Hollingworth, C.; Gouverneur, V. Chem. Commun. 2012, 48,
929. (b) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
c) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160. (d) Brown, J. M.;
Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 8610.
4) For examples of C−F bond formation from Pd(IV)(R)(F)
(
2
(
(
complexes, see: (a) McMurtrey, K. B.; Racowski, J. M.; Sanford, M. S.
Org. Lett. 2012, 14, 4094. (b) Racowski, J. M.; Kampf, J. W.; Sanford,
M. S. Angew. Chem., Int. Ed. 2012, 51, 3414. (c) Ball, N. D.; Kampf, J.
W.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 2878. (d) Furuya, T.;
Benitez, D.; Tkatchouk, E.; Strom, A. E.; Tang, P.; Goddard, W. A.;
Ritter, T. J. Am. Chem. Soc. 2010, 132, 3793. (e) Lee, E.; Kamlet, A. S.;
Powers, D. C.; Neumann, C. N.; Boursalian, G. B.; Furuya, T.; Choi,
D. C.; Hooker, J. M.; Ritter, T. Science 2011, 334, 639.
(
5) Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006,
28, 7134.
6) (a) Chan, C. S. L.; Wasa, M.; Wang, X.; Yu, J.-Q. Angew. Chem.,
1
(
Int. Ed. 2011, 50, 9081. (b) Wang, X.; Mei, T. S.; Yu, J.-Q. J. Am.
Chem. Soc. 2009, 131, 7520.
(7) (a) Maimone, T. J.; Milner, P. J.; Kinzel, T.; Zhang, Y.; Takase,
M. K.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 18106. (b) Noel,
T.; Maimone, T. J.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50,
8
900. (c) Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; Garcia-
Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science 2009, 321, 1661.
8) (a) Tang, P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2010, 132,
(
1
1
2150. (b) Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009,
31, 1662.
(
9) (a) Furuya, T.; Ritter, T. Org. Lett. 2009, 11, 2860. (b) Furuya,
T.; Kaiser, H. M.; Ritter, T. Angew. Chem., Int. Ed. 2008, 47, 5993.
10) Tang, P.; Ritter, T. Tetrahedron 2011, 67, 4449.
(
a
General conditions: substrate (0.25 mmol, 1 equiv),
(11) For an example of fluorination of haloarenes by CuF /TMEDA,
2
(tBuCN) CuOTf or (MeCN) CuBF (1 to 2 equiv), NFTPT (2
equiv), 40 or 80 °C, 12 h. Copper salt and NFTPT were prestirred in
see: Grushin, V. Process for Preparing Fluoroarenes from Haloarenes.
U.S. Patent 7,202,388, 2007.
(12) Casitas, A.; Canta, M.; Sola, M.; Costas, M.; Ribas, X. J. Am.
Chem. Soc. 2011, 133, 19386.
(13) Yao, B.; Wang, Z.-L.; Zhang, H.; Wang, D.-X.; Zhao, L.; Wang,
M.-X. J. Org. Chem. 2012, 77, 3336.
2
4
4
b
solvent for 5 min, followed by addition of the substrate. Yield
determined by 19F NMR spectroscopy. Isolated yield. Isolated
products contained small amounts (4−6%) of inseparable proto-
deboronated side-products.
c
d
(
(
14) Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 10795.
15) While this manuscript was under review, a closedly related
transformation was reported by Hartwig and co-workers: Fier, P. S.;
Luo, J.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2552.
ASSOCIATED CONTENT
Supporting Information
Experimental details and spectroscopic and analytical data for
(
16) Engle, K. M.; Mei, T.-S.; Wang, X.; Yu, J.-Q. Angew. Chem., Int.
Ed. 2011, 50, 1478.
17) For metal-free electrophilic fluorination of electron rich aryl
■
*
S
(
trifluoroborates by F-TEDA-BF , see: Cazorla, C.; Metay, E.;
4
Andrioletti, B.; Lemaire, M. Tetrahedron Lett. 2009, 50, 3936.
(18) Inert atmosphere and dry reagents are required for all the
reactions in Schemes 3 and 4. Reactions conducted in air with
nondried reagents showed significantly reduced yields. See Supporting
Information for more details.
AUTHOR INFORMATION
(19) 19F NMR analysis of the reaction of ( BuCN) CuOTf with
t
2
NFTPT in EtOAc at room temperature shows a resonance at −123.0
ppm, which may correspond to a Cu(III)−F; however, this species is
formed in low yield (∼1%), so it is unclear whether it is responsible for
the observed reactivity. When this same reaction was conducted in the
presence of 10 equiv of THF, the Cu(III) complex recently
characterized by Hartwig [ref 15] was detected by F NMR
spectroscopy, albeit also in modest (∼18%) yield. See Supporting
Information for relevant spectra. Ongoing efforts are focused on
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
1
9
We thank the Dow Chemical Company for financial support.
We thank Dr. Douglas Bland and Dr. Gary Roth from Dow
Chemical for helpful discussions.
C
dx.doi.org/10.1021/ja400300g | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX