Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C6CC09412K
COMMUNICATION
Journal Name
1
2
3
P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, in
Electrochromism: Fundamentals and Applications, VCH
Publishers, Inc., New York, 1995.
P. M. S. Monk, in The Viologens: Physicochemical properties,
synthesis, and applications of the salts of 4,4'-bipyridine,
John Wiley & Sons, Chichester, England, 1989.
(a) G. Chidichimo, D. Imbardelli, B. C. De Simone, P. Barone,
M. Barberio, A. Bonanno, M. Camarca and A. Oliva, J. Phys.
Chem. C, 2010, 114, 16700; (b) H. Lu, S. Kao, T. Chang, C.
Kung and K. Ho, Sol. Energy Mater. Sol. Cells, 2016, 147, 75;
(c) H. Lu, S. Kao, H. Yu, T. Chang, C. Kung and K. Ho, ACS Appl.
(Fig. 3b) indicates that the residual coloured species can be
recovered by holding the potential for a longer period. The
coloration efficiency (η = ΔAbs(λ)/ΔQ, slope of Fig. 3b) of this
EC cell at 550 nm was 70 cm2C−1 at 1.0 V. This value is the
almost same as that obtained for a ion-gel EC cell consisting of
viologen (78 cm2C−1 at 0.80 V and 605 nm).13 On the other
hand, our value is larger than that of a solid-state EC cell
consisting of viologen-type IL (10.7 cm2C−1 at 0.84 V and 610
nm)7h and polymeric ionic liquid consisting viologen system
(38.6 cm2C−1 at 1.2 V and 605 nm)3c but smaller than those of a
viologen-modified TiO2 EC cell (270 cm2C−1 at 1.2 V and 608
nm)14 and ZnO nanowire EC cell (196 cm2C−1 at 2.0 V and 608
nm)15. The EC cell in the present work, while exhibiting middle-
ranking efficiency, possesses a simple structure (ITO/Fc-V/ITO)
without the need for any additives or compartments.
Remarkably, the EC cell was durable for more than 10000
alternating potential cycles without any degradation (Fig. 3c).
Therefore, [FcC11VC1][TFSI]2 is an attractive material for EC
devices.
Mater. Interfaces, 2016, 8, 30351.
4
5
6
Y. Nishikitani, S. Uchida, T. Asano, M. Minami, S. Oshima, K.
Ikai and T. Kubo, J. Phys. Chem. C, 2008, 112, 4372.
M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and B.
Scrosati, Nature Mater., 2009, 8, 621.
A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S.
Sheff, A. Wierzbicki, J. H. Davis, Jr. and R. D. Rogers, Chem.
Commun., 2001, 135.
7
(a) T. Hatazawa, R. H. Terrill and R. W. Murray, Anal. Chem.,
1996, 68, 597; (b) K. Ito-Akita, H. Ohno, Proc. Electrochem.
Soc., 2000, 99, 193; (c) R. P. Singh and J. M. Shreeve, Inorg.
Chem., 2003, 42, 7416; (d) R. P. Singh and J. M. Shreeve,
Inorg. Chem., 2003, 42, 7416; P. K. Bhowmik, H. Han, I. K.
Ndedeltchev; (e) J. J. Cebe, S. W. Kang and S. Kumar, Liq.
Cryst., 2006, 33, 891; (f) H. Q. N. Gunaratne, P. Nockemann,
S. Olejarz, S. M. Reid, K. R. Seddon and G. Srinivasan, Aust. J.
Chem., 2013, 66, 607; (g) N. Jordão, L. Cabrita, F. Pina and L.
Branco, Chem. Eur. J, 2013, 20, 3982; (h) A. Kavanagh, K. J.
Fraser, R. Byrne and D. Diamond, ACS Appl. Mater. Interfaces,
Conclusions
In conclusion, we proposed an electrochromic RAIL, ferrocene-
viologen linked ionic liquid ([FcC11VC1][TFSI]2), for a simple EC
cell without any other additives: solvent, supporting
electrolyte, and sacrificial agent. We synthesized
[FcC11VC1][TFSI]2 and demonstrated that it functions as a
single-component liquid EC material in a compartment-free
two-electrode EC cell. As the EC device, we built a prototype
symmetrical, optically-transparent cell. Remarkable properties
of [FcC11VC1][TFSI]2 as an EC material include: (i) its non-
volatile properties allowed construction of a solvent- and
electrolyte-free electrochemical system; (ii) the EC cell
containing [FcC11VC1][TFSI]2 was durable for at least 10000
potential cycles without any degradation. These results
suggest that V-Fc-linked RAILs are competent candidate EC
materials. At the present stage, however, the EC cell did not
show the good contrast after several dozen potential step
cycles because of the slow alternate response of the EC cell.
Recently, viologens have exerted the potential of energy
storage because of their high energy density in aqueous
solution systems.16 The energy density should depend on the
concentration of viologens. Viologen-based RAILs contains a
high concentration reaching ca. 1.5 M of viologen. Therefore,
Fc-V-linked RAILs can be also used for energy storage in
electrolyte- and solvent-free systems. To achieve a more rapid
response and clear contrast, the viscosity of Fc-V-linked RAILs
needs to be lowered and the EC cell system should be
optimized. These investigations are currently in progress in our
laboratory.
2013, 5, 55; (i) N. Jordão, H. Cruz, A. Branco, F. Pina and L.
Branco, ChemPlusChem, 2015, 80, 202; (j) N. Bodappa, P.
Broekmann, Y. Fu, J. Furrer, Y. Furue, T. Sagara, H.
Siegenthaler, H. Tahara, S. Vesztergom, K. Zick, and T.
Wandlowski, J. Phys. Chem. C, 2015, 119, 1067; (k) H. Tahara,
Y. Furue, C. Suenaga and T. Sagara, Cryst. Growth Des., 2015,
15, 4735.
(a) R. Balasubramanian, W. Wang and R. W. Murray, J. Am.
Chem. Soc., 2006, 128, 9994; (b) J. Langmaier, A. Trojánek
and Z. Samec, Electrochem. Commun., 2010, 12, 1333; (c) X.
Sui, M. A. Hempenius and G. J. Vancso, J. Am. Chem. Soc.,
2012, 134, 4023; (d) B. Gharib and A. Hirsch, Eur. J. Org.
Chem., 2014, 19, 4123; (e) P. Küblera and J. Sundermeyer,
8
Dalton Trans., 2014, 43, 3750; (f) B. Gélinas and D.
Rochefort, Electrochim. Acta, 2015, 162, 36; (g) W. Yao, S. P.
K., R. D. Rogers and T. P. Vaid, Phys. Chem. Chem. Phys.,
2015, 17, 14107.
9
(a) R. Kawano and M. Watanabe, Chem. Commun., 2003,
330; (b) V. K. Thorsmølle, G. Rothenberger, D. Topgaard, J. C.
Brauer, D. B. Kuang, S. M. Zakeeruddin, B. Lindman, M.
Grätzel and J. E. Moser, ChemPhysChem, 2011, 12, 145; (c) V.
K. Thorsmølle, D. Topgaard, J. C. Brauer, S. M. Zakeeruddin,
B. Lindman, M. Grätzel and J. E. Moser, Adv. Mater., 2012,
24, 781; (d) V. K. Thorsmølle, J. C. Brauer, S. M. Zakeeruddin,
M. Grätzel and J. E. Moser, J. Phys. Chem. C, 2012, 116, 7989.
10 E. Hwang, S. Seo, S. Bak, H. Lee, M. Min and H. Lee, Adv.
Mater., 2014, 26, 5129.
11 H. L. Ngo, K. LeCompte, L. Hargens and A. B. McEwen,
Thermochim. Acta, 2000, 357-358, 97
12 J. H. T. Luong, K. B. Male and S. Zhao, Anal. Biochem., 1993,
212, 269.
13 H. C. Moon, C. -H. Kim, T. P. Lodge and C. D. Frisbie, ACS
Appl. Mater. Interfaces, 2016, 8, 6252.
14 D. Cummins, G. Boschloo, M. Ryan, D. Corr, S. N. Rao and D.
Fitzmaurice, J. Phys. Chem. B, 2000, 104, 11449.
Notes and references
‡This work was supported by a Japan Society for the Promotion
of Science (JSPS) Grant-in-Aid for Young Scientists (B) No.
26810052 (H.T.).
15 X. W. Sun and J. X. Wang, Nano Lett., 2008,
16 S.-E. Chun, B. Evanko, X. Wang, D. Vonlanthen, X. Ji, G. D.
Stucky and S. W. Boettcher, Nature Commun., 2015, , 7818.
8, 1884.
6
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins