J . Org. Chem. 2000, 65, 5871-5874
5871
Syn th esis of 3, 4-O-Isop r op ylid en e-
(3S,4S)-d ih yd r oxy-(2R,5R)-
bis(d ip h en ylp h osp h in o)h exa n e a n d Its
Ap p lica tion in Rh -Ca ta lyzed High ly
En a n tioselective Hyd r ogen a tion of
En a m id es
Wenge Li and Xumu Zhang*
Department of Chemistry, 152 Davey Laboratory,
The Pennsylvania State University,
F igu r e 1.
University Park, Pennsylvania 16802
bisphosphine ligand for highly efficient Rh-catalyzed
asymmetric hydrogenation as well as the principle of
conformational analysis for designing effective chiral
ligands.
xumu@chem.psu.edu
Received March 28, 2000
Development of chiral phosphine ligands has played a
significant role in transition metal-catalyzed asymmetric
synthesis and has attracted much attention of synthetic
chemists.1 Chiral C2-symmetric diphosphines are of
special interest due to their effectiveness in many asym-
metric reactions.2 Ligands such as DIOP,3 DIPAMP,4
Chiraphos,5 Skewphos,6 BPPM,7 DEGPhos,8 BINAP,9
DuPhos,10 BPE,10 BICP,11 and PennPhos12 are some
representative examples of 1,2-, 1,3-, and 1,4-diphos-
phines which form a five-, six-, and seven-membered ring
with transition metals. Due to the limitation of existing
chiral ligands in their activity and enantioselectivity for
different reactions and substrates, design of new chiral
phosphines is still an important and challenging goal.
Herein, we report development of a new chiral 1,4-
The relationship between conformations of a chiral
catalyst and reaction enantioselectivity has been exten-
sively studied. In general, high asymmetric induction is
attributed to a well-defined chiral conformation of the
metal-ligand chelating compound.13 For Rh-catalyzed
asymmetric hydrogenation, orientation of phenyl groups
of chiral diphenylphosphino ligands dictates the enanti-
oselectivity.14 Ligands such as BINAP, DIOP, BPPM,
DEGPhos, Chiraphos, Skewphos, and BICP form metal
complexes in which one chelate ring conformation is
considered to be most stable. However, metal complexes
with these ligands have different degrees of conforma-
tional flexibility. Generally, a seven-membered ring metal
complex is more conformationally flexible than six- and
five-membered ring metal species. The conformational
flexibility in a chiral catalyst sometimes leads to erosion
of enantioselectivity. For example, a metal-DIOP com-
plex is conformationally flexible and the stereogenic
centers may be too far from the substrate (transfer of
backbone chirality to the phenyl groups on the phosphine
goes through a methylene group).
To overcome this drawback, Kagan synthesized ligand
2 in which stereogenic centers are closer to the phos-
phines.15 Unfortunately, enantioselectivity for Rh-cata-
lyzed asymmetric hydrogenation of dehydroamino acids
and enamides with ligand 2 is lower compared to the
corresponding Rh-DIOP species.15 We rationalized that
the two methyl groups in 2 may locate in axial positions
in the chelate ring resulting in an unfavorable conforma-
tion for enantioselective asymmetric reactions. To develop
an effective asymmetric catalyst, we decided to invert the
configuration of two stereogenic centers in 2 to make
chiral ligand 3 (R, S, S,R)-DIOP*16 so that methyl groups
along with all other substituents orient in equatorial
positions.17 While this hypothesis needs to be approved,
(1) Brunner, H.; Zettlmeier, W. Handbook of Enantioselective Ca-
talysis with Transition Metal Compounds; VCH Verlagsgesellschaft:
Weinheim, 1993; Vol. 2, Ligands-References, p 359.
(2) (a) Ojima, I. Ed. Catalytic Asymmetric Synthesis; VCH: New
York, 1993. (b) Sheldon, R. A. Chirotechnology, Marcel Dekker: New
York, 1993. (c) Noyori, R. Asymmetric Catalysis in Organic Synthesis;
J ohn Wiley & Sons: New York, 1994. (d) J acobsen, E. N.; Pfaltz, A.;
Yamamoto, H. Comprehensive Asymmetric Catalysis I-III; Springer:
New York, 1999.
(3) Kagan, H. B.; Dang, T.-P. J . Am. Chem. Soc. 1972, 94, 6429.
(4) (a) Knowles, W. S.; Sabacky, M. J .; Vineyard, B. D. J . Chem.
Soc., Chem. Commun. 1972, 10. (b) Vineyard, B. D.; Knowles, W. S.;
Sabacky, M. J .; Bachman, G. L.; Weinkauff, D. J . J . Am. Chem. Soc.
1977, 99, 5946.
(5) Fryzuk, M. D.; Bosnich, B. J . Am. Chem. Soc. 1977, 99, 6262.
(6) MacNeil, P. A.; Roberts, N. K.; Bosnich, B. J . Am. Chem. Soc.
1981, 103, 2273.
(7) (a) Achiwa, K. J . Am. Chem. Soc. 1976, 98, 8265. (b) Ojima, I.;
Yoda, N. Tetrahedron Lett. 1980, 21, 1051.
(8) Nagel, U.; Kinzel, E.; Andrade, J .; Prescher, G. Chem. Ber. 1986,
119, 3326.
(9) (a) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.;
Souchi, T.; Noyori, R. J . Am. Chem. Soc. 1980, 102, 7932. (b) Miyashita,
A.; Takaya, H.; Souchi, T.; Noyori, R. Tetrahedron 1984, 40 1245. (c)
Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.;
Takemomi, T.; Akutagawa, S.; Noyori, R. J . Org. Chem. 1986, 51, 629.
(10) (a) Burk, M. J .; Feaster, J . E.; Harlow, R. L. Organometallics
1990, 9, 2653. (b) Burk, M. J . J . Am. Chem. Soc. 1991, 113, 8518. (c)
Burk, M. J .; Feaster, J . E.; Nugent, W. A.; Harlow, R. L. J . Am. Chem.
Soc. 1993, 115, 10125. (d) Burk, M. J .; Lee, J . R.; Martine, J . P. J .
Am. Chem. Soc. 1994, 116, 10847. (e) Burk, M. J .; Wang, Y. M.; Lee,
J . R. J . Am. Chem. Soc. 1996, 119, 5142.
(11) (a) Zhu, G.; Cao, P.; J iang, Q.; Zhang, X. J . Am. Chem. Soc.
1997, 119, 1799. (b) Zhu, G.; Zhang, X. J . Org. Chem. 1998, 63, 3133.
(c) Zhu, G.; Zhang, X. J . Org. Chem. 1998, 63, 9591. (d) Cao, P.; Zhang,
X. J . Am. Chem. Soc. 1999, 121, 7708.
(12) (a) J iang, Q.; J iang, Y.; Xiao, D.; Cao, P.; Zhang, X. Angew.
Chem., Int. Ed. Engl. 1998, 37, 1100. (b) J iang, Q.; Xiao, D.; Zhang,
Z.; Cao, P.; Zhang, X. Angew. Chem., Int. Ed. Engl. 1999, 38, 516. (c)
Zhang, Z.; Zhu, G.; J iang, Q.; Xiao, D.; Zhang, X. J . Org. Chem. 1999,
64, 1774.
(13) (a) Fryzuk, M. D.; Bosnich, B. J . Am. Chem. Soc. 1978, 100,
5491. (b) Slack, D. A.; Greveling, I.; Baird, M. C. Inorg. Chem. 1979,
18, 3125. (c) Bosnich, B.; Roberts, N. K. Adv. Chem. Ser. 1982, 196,
337. (d) Bacos, J .; Toth, I.; Heli, B.; Szalontai, G.; Parkanyi, L.; Fulop,
V. J . Organomet. Chem. 1989, 370, 263. (e) Trabesinger, G.; Albinati,
A.; Feiken, N.; Kunz, R. W.; Pregosin, P. S.; Tschoener, M. J . Am.
Chem. Soc. 1997, 119, 6315.
(14) (a) Knowles, W. S. Acc. Chem. Res. 1983, 16, 106. (b) Oliver, J .
D.; Riley, D. P. Organometallics 1983, 2, 1032. (c) Brown, J . M.; Evans,
P. L. Tetrahedron, 1988, 44, 4905. (d) Giovannetti, J . S.; Kelly, C. M.;
Landis, C. R. J . Am. Chem. Soc. 1993, 115, 4040. (e) Brunner, H.;
Winter, A.; Breu, J . J . Organomet. Chem. 1998, 553, 285.
(15) Kagan, H. B.; Fiaud, J . C.; Hoornaert, C.; Meyer, D.; Poulin, J .
C. Bull. Soc. Chim. Belg. 1979, 88, 923.
10.1021/jo0004613 CCC: $19.00 © 2000 American Chemical Society
Published on Web 08/17/2000