T. Sakai et al. / Tetrahedron Letters 45 (2004) 9261–9263
9263
that the hydrogenolysis was possible with 10% Pd/C
under hydrogen balloon conditions for 24 h shorter than
the hydrogenation time, 40h, required for the benzyl
group-come off (runs 2 and 5). Expectedly, a diphenyl-
methyl group was cleaved easily to give 7 in a good yield
Kambara, T.; Hussein, M. A.; Fujieda, H.; Iida, A.;
Tomioka, K. Tetrahedron Lett. 1998, 39, 9055–9058; (c)
Hussein, M. A.; Iida, A.; Tomioka, K. Tetrahedron 1999,
5
5, 11219–11228; (d) Kambara, T.; Tomioka, K. J. Org.
Chem. 1999, 64, 9282–9285; (e) Tomioka, K.; Fujieda, H.;
Hayashi, S.; Hussein, M. A.; Kambara, T.; Nomura, Y.;
Kanai, M.; Koga, K. Chem. Commun. 1999, 715–716; (f)
Hata, S.; Iguchi, M.; Iwasawa, T.; Yamada, K.; Tomioka,
K. Org. Lett. 2004, 6, 1721–1724; (g) Hata, S.; Iwasawa,
T.; Iguchi, M.; Yamada, K.; Tomioka, K. Synthesis 2004,
1471–1475.
(
1
run 6). These hydrogenolysis reactions indicated that
0% Pd/C–ordinary atmosphere of hydrogen in metha-
nol is the conditions of choice. It is also important to
note that no racemization was observed in these hydro-
genolysis reactions of 6, indicating potential utility of
these N-masking groups in the synthetic manipulation
of 6.
6. For the leading reference of asymmetric conjugate addi-
tion of chiral lithium amide, see: Davies, S. G.; Garner, A.
C.; Nicholson, R. L.; Osborne, J.; Savory, E. D.; Smith, A.
D. Chem. Commun. 2003, 2134–2135.
. Although the reaction of 2.2equiv of LDA derived from 4
was reported to give the adduct with 68% ee, 4equiv of
LDA was found to improve the enantioselectivity up to
In conclusion, systematic survey of lithium amide struc-
tures lead to anthracen-9-ylmethylamine potentially
applicable in asymmetric conjugate addition to cinna-
mate and following hydrogenolytic demasking to b-amino
ester. Since b-amino esters are constituents of organic
7
8
3% ee.
8
. Greene, T. W.; Wuts, P. G. Protective Groups in Organic
Synthesis; John Wiley & Sons: New York, 1999.
9. (a) Tomioka, K.; Inoue, I.; Shindo, M.; Koga, K.
Tetrahedron Lett. 1990, 31, 6681–6684; (b) Taniyama,
D.; Hasegawa, M.; Tomioka, K. Tetrahedron Lett. 2000,
1
3
compounds with promising function, the journey in
1
4,15
this line will be continued in our laboratories.
41, 5533–5536; (c) Hasegawa, M.; Taniyama, D.; Tomi-
oka, K. Tetrahedron 2000, 56, 10153–10158.
Acknowledgements
1
0. These amines are commercially available except 10b,
which was prepared according to the reported procedure.
This research was partially supported by the 21st Cen-
tury COE (Center of Excellence) Program ÔKnowledge
Information Infrastructure for Genome ScienceÕ and a
Grant-in-Aid for Scientific Research from the Ministry
of Education, Culture, Sports, Science and Technology,
Japan.
(
a) Rai, R.; Katzenellenbogen, J. A. J. Med. Chem. 1992,
5, 4297–4305; (b) Stack, D. E.; Hill, A. L.; Diffendaffer,
3
C. B.; Burns, N. M. Org. Lett. 2002, 4, 4487–4490.
1. The use of 3equiv of lithium amide gives the comparable
level of selectivity with the reaction in the presence of
TMSCl.
1
1
2. Davies, S. G.; Garrido, N. M.; Ichihara, O.; Walters, I. A.
S. J. Chem. Soc., Chem. Commun. 1993, 1153–1155.
3. (a) Drey, C. N. C. Chemistry and Biochemistry of the
Amino Acids; Chapman and Hall: London, 1985; (b)
Hecht, S. M. Acc. Chem. Res. 1986, 19, 383–391; (c)
Enantioselective Synthesis of b-Amino Acids; Juaristi, E.,
Ed.; Wiley-VCH: New York, 1997.
References and notes
1
1
. (a) Tomioka, K. Synthesis 1991, 541–549; (b) Tomioka,
K.; Shindo, M.; Koga, K. J. Am. Chem. Soc. 1989, 111,
8
266–8268; (c) Shindo, M.; Koga, K.; Tomioka, K. J. Am.
Chem. Soc. 1992, 114, 8732–8733; (d) Shindo, M.; Koga,
K.; Tomioka, K. J. Org. Chem. 1998, 63, 9351–9357.
. Doi, H.; Sakai, T.; Iguchi, M.; Yamada, K.; Tomioka, K.
J. Am. Chem. Soc. 2003, 125, 2886–2887.
. (a) Uyehara, T.; Asano, N.; Yamamoto, Y. J. Chem. Soc.,
Chem. Commun. 1987, 1410–1411; (b) Yamamoto, Y.;
Asano, N.; Uyehara, T. J. Am. Chem. Soc. 1992, 114,
14. Recently reported is a fascinating asymmetric amination
and its equivalent: (a) Yamagiwa, N.; Matsunaga, S.;
Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 16178–16179;
(b) Hamashima, Y.; Somei, H.; Shimura, Y.; Tamura, T.;
Sodeoka, M. Org. Lett. 2004, 6, 1861–1864; (c) Palomo,
C.; Oiarbide, M.; Halder, R.; Kelso, M.; G o´ mez-Bengoa,
E.; Garc ´ı a, J. M. J. Am. Chem. Soc. 2004, 126, 9188–9189.
2
3
5
427–5429.
6
4
5
. Doi, H.; Sakai, T.; Yamada, K.; Tomioka, K. Chem.
Commun. 2004, 1850–1851.
. Our approaches to asymmetric synthesis of b-amino
alkanoate by the Mannich-type reaction of a lithium ester
enolate: (a) Fujieda, H.; Kanai, M.; Kambara, T.; Iida, A.;
Tomioka, K. J. Am. Chem. Soc. 1997, 119, 2060–2061; (b)
15. Recently reported application of Davis protocol to the
asymmetric synthesis of a pharmaceutical by Merck
group: Yasuda, N.; Hsiao, Y.; Jensen, M. S.; Rivera, N.
R.; Yang, C.; Wells, K. M.; Yau, J.; Palucki, M.; Tan, L.;
Dormer, P. G.; Volante, R. P.; Hughes, D. L.; Reider, P. J.
J. Org. Chem. 2004, 69, 1959–1966.