A. Prechter, M. R. Heinrich
SHORT COMMUNICATION
[7]
[8]
[9]
a) F. R. Dietz, A. Prechter, H. Gröger, M. R. Heinrich, Tetra-
hedron Lett. 2011, 52, 655–657; b) A. Prechter, H. Gröger,
M. R. Heinrich, Org. Biomol. Chem. 2012, 10, 3384–3387.
For studies on the racemization of a related azo compound,
see: N. A. Porter, L. J. Marnett, J. Am. Chem. Soc. 1973, 95,
4361–4367.
For recent use of TEMPO in organic synthesis see: a) M. Hart-
mann, Y. Li, A. Studer, J. Am. Chem. Soc. 2012, 134, 16516–
16519; b) Y. Li, A. Studer, Angew. Chem. 2012, 124, 8345–8348;
Angew. Chem. Int. Ed. 2012, 51, 8221–8224.
tions, the reaction nevertheless shows that aliphatic alcohols
are also tolerated by the enzyme. Comparable to styrene-
derived alcohols 3 reported in Table 4, remaining low-en-
antioenriched aliphatic alcohol 10 underwent clean racemi-
zation in boiling toluene.
[10]
[11]
a) C. Wetter, K. Jantos, K. Woithe, A. Studer, Org. Lett. 2003,
5, 2899–2902; b) C. Wetter, A. Studer, Chem. Commun. 2004,
174–175; c) K. Molawi, T. Schulte, K. O. Siegenthaler, C.
Wetter, A. Studer, Chem. Eur. J. 2005, 11, 2335–2350; d) T.
Vogler, A. Studer, Synthesis 2006, 4257–4265.
For review articles, see: a) A. Studer, Chem. Soc. Rev. 2004, 33,
267–273; b) T. Vogler, A. Studer, Synthesis 2008, 1979–1993; c)
L. Tebben, A. Studer, Angew. Chem. 2011, 123, 5138–5174; An-
gew. Chem. Int. Ed. 2011, 50, 5034–5068.
C. Detrembleur, T. Gross, R.-V. Meyer, United States Patent
US2003/0236368A1, 2003; Chem. Abstr. 2003, 140, 60153.
For examples of (partially enantioselective) alternative synthe-
ses, see: a) M. A. A. Ghani, D. Abdallah, P. M. Kazmaier, B.
Keoshkerian, E. Buncel, Can. J. Chem. 2004, 82, 1403–1412;
b) M. P. Sibi, M. Hasegawa, J. Am. Chem. Soc. 2007, 129,
4124–4125; c) K. Akagawa, T. Fujiwara, S. Sakamoto, K.
Kudo, Chem. Commun. 2010, 46, 8040–8042.
Conclusions
In summary, we have shown that 2-(tetramethylpiperi-
dine-1-oxyl)ethanols are well-suited substrates for CAL-B-
catalyzed transesterification with vinyl acetate. Beneficially,
the remaining alcohols can be cleanly racemized under mild
conditions in the presence of TEMPO by exploiting the per-
sistent radical effect (PRE). An initial experiment with an
ester functionality at the place of the radical-stabilizing
phenyl group showed that expansion of the scope towards
aliphatic substrates is possible, although further optimiza-
tion is required for this type of substrate. As a result of the
importance of water activity in many enzymatic reactions,
our current studies are also directed towards evaluation of
this parameter.[25]
[12]
[13]
[14]
[15]
CAL-B was used in the immobilized form of Novozym 435.
For loading and activity, see: J. A. Laszlo, M. Jackson, R. M.
Blanco, J. Mol. Catal. B 2011, 69, 60–65.
Supporting Information (see footnote on the first page of this arti-
cle): Detailed experimental procedures; 1H NMR and 13C NMR
spectra for compounds 3b–j, 7b–i, 10, and 11; and 1H NMR spectra
for compounds 3a and 7a.
For examples of enzymatic reactions in ionic liquids, see: a) A.
Kamal, G. Chouhan, Tetrahedron Lett. 2004, 45, 8801–8805;
b) P. Lozano, T. de Diego, S. Gmouh, M. Vaultier, J. L. Iborra,
Biotechnol. Prog. 2004, 20, 661–669; c) T. de Diego, P. Lozano,
S. Gmouh, M. Vaultier, J. L. Iborra, Biomacromolecules 2005,
6, 1457–1464; d) S. Park, R. J. Kazlauskas, J. Org. Chem. 2001,
66, 8395–8401; e) N. M. T. Lourenço, C. A. M. Afonso, Angew.
Chem. 2007, 119, 8326–8329; Angew. Chem. Int. Ed. 2007, 46,
8178–8181; f) P. Domínguez de María, Angew. Chem. 2008,
120, 7066–7075; Angew. Chem. Int. Ed. 2008, 47, 6960–6968;
g) P. Domínguez de María, Z. Maugeri, Curr. Opin. Chem.
Biol. 2011, 15, 220–225; h) F. van Rantwijk, R. A. Sheldon,
Chem. Rev. 2007, 107, 2757–2785.
Acknowledgments
The authors would like to thank the Universität Bayern e.V. for a
“Bayerische Eliteförderung” fellowship (to A. P.). The authors are
further grateful for the experimental support of Stefanie Kindt and
Dominik Grau as well as for a sample of [TMBA][NTf2] provided
by Dr. Michel Vaultier (Université Bordeaux 1).
[16]
[17]
For a review article on the determination and significance of
E values, see: A. J. J. Straathof, J. A. Jongejan, Enzyme Microb.
Technol. 1997, 21, 559–571.
[1] M. Ahmed, T. Kelly, A. Ghanem, Tetrahedron 2012, 68, 6781–
6802.
[2] U. T. Strauss, U. Felfer, K. Faber, Tetrahedron: Asymmetry
1999, 10, 107–117.
For the most commonly used equations, see: a) C.-S. Chen, Y.
Fujimoto, G. Girdaukas, C. J. Sih, J. Am. Chem. Soc. 1982,
104, 7294–7299; b) J. L. L. Rakels, A. J. J. Straathof, J. J.
Heijnen, Enzyme Microb. Technol. 1993, 15, 1051–1056.
For negative effects of increased acyl donor concentrations on
the E value, see: M. Merabet-Khellasi, L. Aribi-Zouioueche,
O. Riant, Tetrahedron: Asymmetry 2009, 20, 1371–1377; for
positive effects, see: a) A.-B. L. Fransson, Deracemization of
Functionalized Alcohols via Combined Ruthenium and Enzyme
Catalysis, Stockholm University, Stockholm, 2006; b) K. Faber,
S. Riva, Synthesis 1992, 895–910.
[3] For some reviews on dynamic kinetic resolutions, see: a) R. S.
Ward, Tetrahedron: Asymmetry 1995, 6, 1475–1490; b) H.
Stecher, K. Faber, Synthesis 1997, 1–16; c) H. Pellissier, Tetra-
hedron 2003, 59, 8291–8327; d) H. Pellissier, Tetrahedron 2008,
64, 1563–1601; e) N. J. Turner, Curr. Opin. Chem. Biol. 2010,
14, 115–121; f) H. Pellissier, Tetrahedron 2011, 67, 3769–3802;
g) A. Parvulescu, J. Janssens, J. Vanderleyden, D. De Vos, Top.
Catal. 2010, 53, 931–941; h) J. H. Lee, K. Han, M.-J. Kim, J.
Park, Eur. J. Org. Chem. 2010, 999–1015; i) B. Martín-Matute,
J.-E. Bäckvall, Curr. Opin. Chem. Biol. 2007, 11, 226–232.
[4] E. J. Ebbers, G. J. A. Ariaans, J. P. M. Houbiers, A. Bruggink,
B. Zwanenburg, Tetrahedron 1997, 53, 9417–9476.
[5] a) S. Gastaldi, S. Escoubet, N. Vanthuyne, G. Gil, M. P. Ber-
trand, Org. Lett. 2007, 9, 837–839; b) L. El Blidi, M. Nechab,
N. Vanthuyne, S. Gastaldi, G. Gil, M. P. Bertrand, J. Org.
Chem. 2009, 74, 2901–2903; c) L. El Blidi, N. Vanthuyne, D.
Siri, S. Gastaldi, M. P. Bertrand, G. Gil, Org. Biomol. Chem.
2010, 8, 4165–4168.
[18]
[19]
[20]
M. R. Heinrich, A. Wetzel, M. Kirschstein, Org. Lett. 2007, 9,
3833–3835.
For alternative stereoselective synthetic approaches towards
comparable 1-aryl-substituted 1,2-diols, see, for example: a) A.
Archelas, R. Furstoss, Trends Biotechnol. 1998, 16, 108–116; b)
L. Cao, J. Lee, W. Chen, T. K. Wood, Biotechnol. Bioeng. 2006,
94, 522–529; c) X. Tian, G.-W. Zheng, C.-X. Li, Z.-L. Wang,
J.-H. Xu, J. Mol. Catal. B 2011, 73, 80–84; d) M. Edin, B.
Martín-Matute, J.-E. Bäckvall, Tetrahedron: Asymmetry 2006,
17, 708–715; e) R. Zhang, Y. Xu, R. Xiao, B. Zhang, L. Wang,
Microb. Cell Fact. 2012, 11:167; f) T. Shimada, K. Mukaide,
A. Shinohara, J. W. Han, T. Hayashi, J. Am. Chem. Soc. 2002,
124, 1584–1585.
[6] For pioneering work, see: a) S. Escoubet, S. Gastaldi, N. Van-
thuyne, G. Gil, D. Siri, M. P. Bertrand, J. Org. Chem. 2006, 71,
7288–7292; b) S. Escoubet, S. Gastaldi, N. Vanthuyne, G. Gil,
D. Siri, M. P. Bertrand, Eur. J. Org. Chem. 2006, 3242–3250.
5588
www.eurjoc.org
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2013, 5585–5589