1
800
F. F. Kneisel, P. Knochel
LETTER
O
O
O
i
ii
MeO2C
I
MeO2C
MgBr
MeO2C
CO2Et
4
5
6: 77 %
Scheme 2 Reagents and conditions: i) NpMgBr (1.1 equiv); THF–NMP (10 equiv), –50 °C to –40 °C, 0.5 h (Method B). ii) 1) ZnBr ; 2) ethyl
2
(
2-bromomethyl)acrylate (1.5 equiv); CuCN 2LiCl (20 mol%).
1
) NpMgBr (1.1 equiv)
THF:DMAC
80 °C, 1 h
O
O
O
-
S
S
S
I
D
+
2) AcOD, -78 °C
D
8a
8b
7
8a : 8b (92:8); 78 %
Scheme 3
equiv); NpMgBr (1.1 equiv); –50 °C to –40 °C; 30 min) References
to the polyfunctional magnesium reagent 5. After trans-
(
1) (a) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P.
Angew. Chem. Int. Ed. 2000, 39, 4415. (b) Knochel, P.;
Millot, N.; Rodriguez, A. L.; Tucker, C. E. Organic
Reactions, Vol. 58; Overman, L. E., Ed.; Wiley & Sons Ltd.:
New York, 2001, 417.
2) Jensen, A. E.; Dohle, W.; Sapountzis, I.; Lindsay, D. M.; Vu,
V. A.; Knochel, P. Synthesis 2002, 565.
3) (a) Alexakis, A.; Malan, C.; Lea, L.; Benhaim, C.;
Fournioux, X. Synlett 2001, 927. (b) Yuan, T.-M.; Yeh, S.-
M.; Hsieh, Y.-T.; Luh, T.-Y. J. Org. Chem. 1994, 59, 8192.
metallation to the corresponding zinc reagent with ZnBr2
(
1.2 equiv), allylation with ethyl (2-bromometh-8
4
yl)acrylate (1.5 equiv) in the presence of CuCN·2LiCl
20 mol%; –25 °C to 20 °C; 3 h) led to the ketone 6 in 77%
(
(
(
yield (Scheme 2). The extent of enolate formation is neg-
ligible in this case.
However, in the case of 2-acetyl-5-iodothiophene (7) a
significant amount of the magnesium enolate is formed.
Thus, the reaction of 7 with NpMgBr (1.1 equiv) in THF
containing DMAC (10 equiv) at –80 °C for 60 min led, af-
ter deuteration with AcOD, to a 92:8 mixture of the two
deuterated thiophene isomers (8a,b) in 78% isolated yield
(c) Tuckmantel, W.; Oshima, K.; Nozaki, H. Chem. Ber.
1986, 119, 1581. (d) Tamura, M.; Kochi, J. K. Bull. Chem.
Soc. Jpn. 1971, 44, 3063.
(
(
4) Villieras, J.; Rambaud, M. Synthesis 1982, 11, 924.
5) Takahashi, Y.; Ito, T.; Sakai, S.; Ishii, Y. Chem. Comm.
(
Scheme 3).
1970, 1065.
(
(
6) Allen, D. W.; Hutley, B. G.; Mellor, M. T. J. J. Chem. Soc.,
Perkin Trans. 2 1972, 63.
7) (a) Negishi, E. Acc. Chem. Res. 1982, 15, 340. (b) Negishi,
E.; Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc. 1980,
Nevertheless, 2-acyl-5-iodothiophenes and 2-butyryl-5-
iodothiophene (9), as well as 2-butyryl-5-iodofurane (10)
were converted to the corresponding Grignard reagent 11
and 12 (entries 8 and 9) and reacted respectively with
chlorotrimethylstannane and ethyl (2-bromo-meth-
yl)acrylate in the presence of CuCN·2LiCl, leading to
the desired products 13 and 14 in 60% and 46% yields (en-
tries 8 and 9).
102, 3298. (c) Kobayashi, M.; Negishi, E. J. Org. Chem.
1980, 45, 5223. (d) Tamaru, Y.; Ochiai, H.; Nakamura, T.;
Yoshida, Z. Tetrahedron Lett. 1986, 27, 955. (e) Klement,
I.; Rottländer, M.; Tucker, C. E.; Majid, T. N.; Knochel, P.;
Venegas, P.; Cahiez, G. Tetrahedron 1996, 52, 7201.
8) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org.
Chem. 1988, 53, 2390.
4
8
(
In summary, we have developed a method allowing the
preparation of arylmagnesium species bearing a keto
group. Extensions of this method are currently underway.9
(9) Typical procedures: (a) Preparation of 2-[2-(2,2-
dimethylpropionyl)-benzyl]-acrylic acid ethyl ester (3d)
using Method A (entry 4 of Table 1):
A dry and argon flushed 50 mL Schlenk tube, equipped with
a septum and a magnetic stirrer was charged with 1-(2-
iodophenyl)-2,2-dimethylpropan-1-one(1b) (288 mg, 1.0
mmol) in dry THF (0.5 mL). The solution was cooled to –50
Acknowledgement
We thank the Fonds der Chemischen Industrie for a Kekulé
scholarship to F. F. K. We thank the BASF AG, Degussa AG and
Chemetall GmbH for generous gifts of chemicals.
°
C and NpMgBr (3.6 mL, 0.6 M in THF, 2.25 mmol) was
slowly added. The pale yellow mixture was stirred for 3 d at
40 °C until GC-analysis of a reaction aliquot indicated
complete iodine-magnesium exchange. Then CuCN 2LiCl
2.3 mL, 1.0 M in THF, 2.3 mmol) was slowly added. After
–
8
(
Synlett 2002, No. 11, 1799–1802 ISSN 0936-5214 © Thieme Stuttgart · New York