Page 5 of 7
Plea sDe a dl t oo nn oT tr aa nd sj ua cs tt i om nasrgins
DOI: 10.1039/C8DT02367K
Journal Name
ARTICLE
Acknowledgements
1
1
1
1
1
1
80
78
76
74
72
70
This work was supported by KAKENHI Grant-in-Aid for
Scientific Research (A) JP17H01200. M.N. is grateful to JSPS
Research Fellowships for Young Scientists (No. JP15J11333).
This work was supported by JSPS Grant-in-Aid for Young
Scientists (B) JP15K17833 and JSPS Grant-in-Aid for Scientific
Research on Innovative Areas (Dynamical Ordering
&
Integrated Functions JP16H00777, Mixed Anion JP17H05485).
This work was supported by the Cooperative Research
Program of ‘Network Joint Research Centre for Materials and
Devices’.
1
@LS
: 1
: [Co(terpy) ](BF )
2
4
2
:
:
:
1·2MeOH
2·2CHCl
3·2.5MeOH : [Co(dpzca)
2 6 2
[Co(pyterpy) ](PF ) ·2MeOH
: [Co(C14terpy)
: [Co(terpyridone)
2
](BF
4
)
2
·MeOH
1@HS
Notes and references
](CF
3
SO ·H O
3
)
2
2
3
2
2
]
#
i
#
§
=
Abbreviations: Ar′CoN(H)Ar (Ar′ = C
6
H
3
-2,6-(C
[Co(C14-terpy)
6’,2’’-terpyridine),
6
H
3
-2,6- Pr
2
)
2
, Ar
(C14-
[Co(4-
:
[
17]
C
6
H
3
-2,6-(C
4’-tetradecyloxy-2,2’
terpyridone) ](CF[ SO ·H
(1H)-pyridone), [Co(dpzca)
pyrazylcarbonyl)-2-pyrazinecarboxamide),
Figure 6. Relationship between the distortion parameters, Σ [Co(pyterpy) ](PF ·2CH OH (pyterpy
,2’:6’,2’’-terpyridine) and Co(Cl Gm)
dichloro-glyoxime dianion, Bn-C16 33 = n-hexadecyl boron).
Abbreviaꢀons: [Co(terpy) ](BF (terpy 2,2’:6’,2’’-
](ClO (terpyR8 = 4’’-Octoxy-2,2’ :
6
H
2
-2,4,6-Me
3
)
2
),
2
](BF
4 2
)
[
18b]
terpy
=
:
70
80
90
100 110 120 130
2
3
3
)
2
2
O (4-terpyridone = 2,6-bis(2-pyridyl)-
(Hdpzca N-(2-
19]
Σ / degree
4
2
]
=
[
20]
2
6
)
2
3
=
4’-(4’’’-pyridyl)-
(Cl Gm =
[
21]
2
2
3
(Bn-C16
H
33
)
2
2
and φ, for
1·2MeOH and 3·2.5MeOH, as well as for the
[
22]
H
previously reported compounds listed in their LS (blue) and the
HS (red) states.
‡
2
4
)
2
=
[
12]
terpyridine), [Co(terpyR8)
2
4 2
)
[
13]
These results indicate that the removal of the lattice methanol 6’,2’’-terpyridine).
solvents from
distortion of the [CoN
1
·2MeOH leads to an increase in the structural
] cores and, at the same time, increasing
6
1
2
O. Kahn and C. J. Martinez, Science, 1998, 279, 44.
Spin Crossover in Transition Metal Compounds I-III; ed. P.
Gütlich and H. A. Goodwin, Springer-Verlag: Berlin,
Heidelberg, Germany, 2004.
Spin-Crossover Materials; ed. M. A. Halcrow, Wiley: Oxford,
United Kingdom, 2013.
(a) P. Gütlich, A. Hauser and H. Spiering, Angew. Chem., Int.
Ed. Engl., 1994, 33, 2024. (b) P. Gütlich, Y. Garcia and H. A.
Goodwin, Chem. Soc. Rev., 2000, 29, 419-427.
J. A. Real, A. B. Gaspar, V. Niel. and M.C. Munoz, Coord.
Chem. Rev., 2003, 236, 121.
the cooperativity for SCO behaviour. On removing the lattice
methanol molecules, the Co–Co centres become closer by
about ~0.9 Å (from 8.923 Å to 8.045 Å), in accord with stronger
intermolecular interaction being present in
Stronger intermolecular interaction might be expected to help
stabilize the highly-distorted [CoN ] cores as well as to increase
1 than in 1·2MeOH.
3
4
6
the cooperativity to produce the resultant observed abrupt ST
behaviour.
5
6
7
M. A. Halcrow, Polyhedron, 2007, 26, 3523-3576.
(a) J. Olguín and S. Brooker, Coord. Chem. Rev., 2011, 255
Conclusions
,
The present results are in keeping with the highly distorted
203-240. (b) S. Brooker and J. A. Kitchen, Dalton Trans.,
2009, 7331.
core of [CoN ] in [Co(Naph-C2-terpy) ](BF ) (1) resulting in
6
2
4 2
8
9
R. G. Miller, S. Narayanaswamy, J. L. Tallon and S. Brooker,
New J. Chem., 2014, 38, 1932-1941.
enhanced intermolecular interaction leading to abrupt ST
behaviour. We have demonstrated that a single-crystal-to-
single-crystal transformation occurs on removal of the lattice
(a) M. Nakaya, R. Ohtani, K. Sugimoto, M. Nakamura, L. F.
Lindoy and S. Hayami, Chem. Eur. J., 2017, 23, 7232-7237. (b)
S. Hayami, M. Nakaya, H. Ohmagari, A. S. Alao, M.
Nakamura, R. Ohtani, R. Yamaguchi, T. Kuroda-Sowa and J. K.
Clegg, Dalton Trans., 2015, 44, 9345-9348.
0 J. Palion-Gazda, A. Switlicka-Olszewska, B. Machura, T.
Grancha, E. Pardo, F. Lloret and M. Julve, Inorg. Chem., 2014,
53, 10009-10011.
solvent from
. The crystal structures of
in both their HS and LS states and showed that he presence of
the lattice solvents in ·2MeOH results in a reduction of the
distortion of the [CoN ] core. This influences the observed SCO
1·2MeOH to form the above de-solvated product
1
1
and ·2MeOH were determined
1
1
1
6
behaviour due to the presence of lower cooperativity and, in 11 V. V. Novikov, I. V. Ananyev, A. A. Pavlov, M.V. Fedin, K. A.
turn, is reflected by ·2MeOH displaying gradual SCO
Lyssenko and Y. Z. Voloshin, Phys. Chem. Lett., 2014, , 496-
00.
1
5
5
behaviour – contrasting with the abrupt SCO found for
1.
1
2 C. A. Kilner and M. A. Halcrow, Dalton Trans., 2010, 39
9
,
Overall, the present study gives new insights for the better
understanding of the magneto-structural correlations in SCO
compounds.
009012.
1
3 P. Nielsen, H. Toftlund, A. D. Bond, J. F. Boas, J. R. Pilbrow, G.
R. Hanson, C. Noble, M. J. Riley, S. M. Neville, B. Moubaraki
and K. S. Murray, Inorg. Chem., 2009, 48, 7033-7047.
4 A. B. Gaspar, M. C. Muñoz, V. Niel and J. A. Real, Inorg.
Chem., 2001, 40, 9-10.
1
1
Conflicts of interest
5 A. Galet, A. B. Gaspar, M. C. Munoz and J. A. Real, Inorg.
Chem., 2006, 45, 4413-4422.
There are no conflicts to declare.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins