DOI: 10.1039/C9TC01397K
Journal of Materials Chemistry C
J. Mater. Chem. C
RSCPublishing
ARTICLE
In theory, the superior device properties of D3 may result
from the following facts. Firstly, nitrogen heterocycle TN4T was
used as main ligand and dithiocarbamate derivative with large
hindered spacers were applied as the ancillary ligands for stable
Ir(III) complexes, showing high PL efficiencies and bipolar
properties, which may contribute to a wider recombination area
and a more balanced distribution for the excitons and help to the
reduced the TTA, TPA and self-quenching effects. Secondly,
the stable dithiolate compounds can reduce the work function of
the emitter and reduce the threshold electric field, therefore
reducing the turn-on voltage and increase the device efficiency.8
Finally, double emissive layers would improve and balance
charge-injection/transporting properties of the devices.14
distribution, the TG curves, the DSC spectra, the cyclic voltammograms,
the emission spectra at 77 K, the selected lifetime curves of iridium
complexes. Current efficiency versus luminance of devices with
different doped concentrations.
1. (a) J. P. Duan, P. P. Sun and C. H. Cheng, Adv. Mater., 2003, 15, 224; (b)
G. J. Zhou, C. L. Ho, W. Y. Wong, Q. Wang, D. G. Ma, L. X. Wang, Z. Y.
Lin, T. B. Marder and A. Beeby, Adv. Funct. Mater., 2008, 18, 499; (c) S.
Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee, C.
Adachi, P. E. Burrows, S. R. Forrest and M. E. Thompson, J. Am. Chem.
Soc., 2001, 123, 4304.
2. (a) T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-
H. Ahn and T. W. Lee, Nat. Photonics, 2012, 6, 105; (b) C. W. Lee and J.
Y. Lee, Adv. Mater., 2013, 25, 5450; (c) S.-Y. Kim, W.-I. Jeong, C. Mayr,
Y.-S. Park, K.-H. Kim, J.-H. Lee, C.-K. Moon, W. Brütting and J.-J. Kim,
Adv. Funct. Mater., 2013, 23, 3896; (d) P. Tao, Y. Miao, Y. Zhang, K.
Wang, H. Li, L. Li, X. Li, T. Yang, Q. Zhao, H. Wang, S. Liu, X. Zhou, B.
Xu and W. Huang, Org. Electron., 2017, 45, 293.
Conclusions
In conclusion, three Ir(III) complexes (4tfmppy)2Ir(dipdtc),
(24btfmppy)2Ir(dipdtc) and (TN4T)2Ir(dipdtc) containing the
unique four-membered ring Ir-S-C-S backbone were rapidly
prepared with high photoluminescence quantum efficiency
yields up to 94.2% in CH2Cl2 at room temperature. The double-
emitting-layer devices using the emitter (TN4T)2Ir(dipdtc)
displayed exceedingly good performances with a ηc,max of 86.59
cd A-1 and an EQEmax of 31.24%. Even at the brightness of
10000 cd m-2, the ηc and EQE can still be obtained as 79.21 cd
A-1 and 28.53%, respectively. This study provides a useful route
to design rapid synthesis of high-performance Ir(III) complex
with the four-membered ring Ir-S-C-S structure, which is key to
the indrustrial production of OLEDs.
3. (a) Q. Wang, I. W. H. Oswald, X. Yang, G. Zhou, H. Jia, Q. Qiao, Y.
Chen, J. Hoshikawa-Halbert and B. E. Gnade, Adv. Mater., 2014, 26,
8107; (b) K. Udagawa, H. Sasabe, C. Cai and J. Kido, Adv. Mater., 2014,
26, 5062; (c) J.-H. Lee, S.-H. Cheng, S.-J. Yoo, H. Shin, J.-H. Chang, C.-I.
Wu, K.-T. Wong and J.-J. Kim, Adv. Funct. Mater., 2015, 25, 361; (d) P.
Tao, Y. Zhang, J. Wang, L. Wei, H. Li, X. Li, Q. Zhao, X. Zhang, S. Liu,
H. Wang and W. Huang, J. Mater. Chem. C., 2017, 5, 9306.
4. (a) C.-Y. Lu, M. Jiao, W.-K. Lee, C.-Y. Chen, W.-L. Tsai, C.-Y. Lin and
C.-C. Wu, Adv. Funct. Mater., 2016, 26, 3250; (b) H. Shin, J.-H. Lee, C.-
K. Moon, J.-S. Huh, B. Sim and J.-J. Kim, Adv. Mater., 2016, 28, 4920;
(c) P. Tao, W. Li, J. Zhang, S. Guo, Q. Zhao, H. Wang, B. Wei, S. Liu, X.
Zhou, Q. Yu, B. Xu and W. Huang, Adv. Funct. Mater., 2016, 26, 881.
5. (a) Q. Zhang, X. Wang, X. Wang, L. Wang and J. Zhang, Org. Electron.,
2016, 33, 281; (b) P. Padungros and A. Wei, Synth. Commun., 2014, 44,
2336; (c) S. C. Ngo, K. K. Banger, M. J. DelaRosa, P. J. Toscano and J. T.
Welch, Polyhedron 2003, 22, 1575; (d) N. Su, Z. G. Wu and Y. X. Zheng,
Dalton Trans., 2018, 47, 7587.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (51773088).
Notes and references
1
State Key Laboratory of Coordination Chemistry, Collaborative
6. (a) D. Q. Gao, F. Scholz, H. G. Nothofer, W. E. Ford, U. Scherf, J. M.
Wessels, A. Yasuda and F. V. Wrochem, J. Am. Chem. Soc., 2011, 133,
5921; (b) L. Q. Chen, C. L. Yang, J. G. Qin, J. Gao, H. You and D. G. Ma,
J. Organomet. Chem., 2006, 691, 3519; (c) K. A. King, P. J. Spellane, R.
J. Watts, J. Am. Chem. Soc., 1985, 107, 1431; (d) A. Juris, V. Balzani, F.
Barigelletti, S. Campagna, P. Belser and A. von Zelewsky, Coord. Chem.
Rev., 1988, 84, 85.
Innovation Center of Advanced Microstructures, Jiangsu Key
Laboratory of Advanced Organic Materials, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, P. R.
2
Shenzhen Key Laboratory of Polymer Science and Technology,
College of Materials Science and Engineering, Shenzhen University
Shenzhen 518060, P.R. China, e-mail: gzhlu@szu.edu.cn
7. (a) P. Holtkamp, F. Friedrich, E. Stratmann, A. Mix, B. Neumann, H.-G.
Stammler and N. W. Mitzel, Angew. Chem. Int. Ed., 2019, 58, 5114; (b)
W. J. Gerber, P.-H. van Wyk, D. M. E. van Niekerk and K. R. Koch, Phys.
Chem. Chem. Phys., 2015, 17, 5712.
#Lu and #Tu have the same contributions to this paper.
†Electronic Supplementary Information (ESI) available: Details of
materials and measurements. Details of X-ray Crystallography. Details
of electrochemical tests and theoretical calculation. Procedures and
methods of OLEDs fabrication and measurements. The crystallographic
data, the selected bond lengths and angles, the electronic cloud density
8. (a) T. Peng, H. Bi, Y. Liu, Y. Fan, H. Z. Gao, Y. Wang and Z. M. Hou, J.
Mater. Chem., 2009, 19, 8072; (b) Q. B. Mei, C. Chen, R. Q. Tian, M.
This journal is © The Royal Society of Chemistry 2013
J. Name., 2019, 00, 1-3 | 6