Communication
ChemComm
conversion (yellow line). Unreacted tetrazole could be recovered as Notes and references
a pure compound after preparative SEC. Critically, when longer
1 G. S. Kumar and Q. Lin, Chem. Rev., 2020, DOI: 10.1021/acs.chemrev.
0c00799.
2 K. Jung, N. Corrigan, M. Ciftci, J. Xu, S. E. Seo, C. J. Hawker and
C. Boyer, Adv. Mater., 2020, 32, 1903850.
3 C. Brieke, F. Rohrbach, A. Gottschalk, G. Mayer and A. Heckel,
Angew. Chem., Int. Ed., 2012, 51, 8446–8476.
irradiation times were applied (2 d irradiation at 500 nm), we were
able to drive the reaction to 100% end-group conversion (Fig. S8,
ESI†). After 515 nm irradiation for 4.3 h, only traces of CA2 are
detected in the spectrum, but could not be quantified.
4 M.-M. Russew and S. Hecht, Adv. Mater., 2010, 22, 3348–3360.
5 M. M. Lerch, M. J. Hansen, W. A. Velema, W. Szymanski and
B. L. Feringa, Nat. Commun., 2016, 7, 12054.
6 H. Frisch, D. E. Marschner, A. S. Goldmann and C. Barner-Kowollik,
Angew. Chem., Int. Ed., 2018, 57, 2036–2045.
7 V. X. Truong, F. Li, F. Ercole and J. S. Forsythe, ACS Macro Lett., 2018,
7, 464–469.
8 M. J. Hansen, W. A. Velema, M. M. Lerch, W. Szymanski and
B. L. Feringa, Chem. Soc. Rev., 2015, 44, 3358–3377.
9 J. R. Hemmer, S. O. Poelma, N. Treat, Z. A. Page, N. D. Dolinski,
Y. J. Diaz, W. Tomlinson, K. D. Clark, J. P. Hooper, C. Hawker and
J. Read de Alaniz, J. Am. Chem. Soc., 2016, 138, 13960–13966.
10 J. P. Olson, M. R. Banghart, B. L. Sabatini and G. C. R. Ellis-Davies,
J. Am. Chem. Soc., 2013, 135, 15948–15954.
These findings show that APAT can react with both small
molecule and macromolecular dipolarophiles. We also modified
APAT to bear a linker (1b, refer to ESI†) consisting of a hydroxy-
functional undecyl chain attached to the C5-phenyl ring, which
can serve as an initiator, hence allowing for polymerization of
APAT and employing it for polymer–polymer ligation. Interestingly,
the novel green light reactive tetrazole may feature pH-respon-
sivity, since the dimethylamino group can act as a base and the
absorption spectrum is significantly blue-shifted upon acidifica-
tion (Fig. S11, ESI†).
In summary, we introduce the design and synthesis of a green
light reactive tetrazole by combining two strategies: extending
the conjugated system and introducing electron-donating sub-
stituents. Without the need for catalysts, the tetrazole reacts
cleanly with a variety of dipolarophiles, including a maleimide-
functional polymer and diethylfumarate, at wavelengths up to
515 nm, which to date is the most red-shifted wavelength
employed to activate a tetrazole in a single-photon process.
Critically, we provide a detailed wavelength-dependent reactivity
map, revealing a reactivity minimum at 360 nm and a maximum
between 430 nm and 450 nm, making this molecule a promising
candidate for l-orthogonal reaction systems. With the detailed
reactivity map available, we were able to employ the tetrazole for
high-conversion polymer end-group modification, using widely
available blue and green LEDs.
´
11 S. Stolik, J. A. Delgado, A. Perez and L. Anasagasti, J. Photochem.
Photobiol., B, 2000, 57, 90–93.
12 E. Sage, P.-M. Girard and S. Francesconi, Photochem. Photobiol. Sci.,
2012, 11, 74–80.
13 G. M. Tsivgoulis and J. M. Lehn, Adv. Mater., 1997, 9, 627–630.
14 D. Bleger and S. Hecht, Angew. Chem., Int. Ed., 2015, 54, 11338–11349.
15 C. P. Ramil and Q. Lin, Curr. Opin. Chem. Biol., 2014, 21, 89–95.
16 D. E. Fast, A. Lauer, J. P. Menzel, A.-M. Kelterer, G. Gescheidt and
C. Barner-Kowollik, Macromolecules, 2017, 50, 1815–1823.
17 D. E. Marschner, P. W. Kamm, H. Frisch, A.-N. Unterreiner and
C. Barner-Kowollik, Chem. Commun., 2020, 56, 14043–14046.
18 H. Frisch, F. R. Bloesser and C. Barner-Kowollik, Angew. Chem., Int.
Ed., 2019, 58, 3604–3609.
19 J. S. Clovis, A. Eckell, R. Huisgen and R. Sustmann, Chem. Ber., 1967,
100, 60–70.
20 W. Song, Y. Wang, J. Qu, M. M. Madden and Q. Lin, Angew. Chem.,
Int. Ed., 2008, 47, 2832–2835.
´
21 K. Krell, D. Harijan, D. Ganz, L. Doll and H.-A. Wagenknecht,
Bioconjugate Chem., 2020, 31, 990–1011.
22 P. Lederhose, K. N. R. Wu¨st, C. Barner-Kowollik and J. P. Blinco,
Chem. Commun., 2016, 52, 5928–5931.
23 O. Guaresti, L. Crocker, T. Palomares, A. Alonso-Varona, A. Eceiza,
L. Fruk and N. Gabilondo, J. Mater. Chem. B, 2020, 8, 9804–9811.
The authors thank Simon Ludwanowski (University of Freiburg)
and Sandra Wiedbrauk (QUT) for helpful discussions. C. B.-K.
acknowledges funding by the Australian Research Council (ARC)
in the context of a Laureate Fellowship underpinning his photo- 24 L. Delafresnaye, N. Zaquen, R. P. Kuchel, J. P. Blinco, P. B. Zetterlund
and C. Barner-Kowollik, Adv. Funct. Mater., 2018, 28, 1800342.
25 L. Delafresnaye, J. P. Hooker, C. W. Schmitt, L. Barner and
chemical research program. C. B.-K. and J. P. B. acknowledge
support via an ARC Discovery project targeted at red-shifting
C. Barner-Kowollik, Macromolecules, 2020, 53, 5826–5832.
photoligation chemistry. Additional support by the Queensland
University of Technology (QUT) and the Karlsruhe Institute of
Technology (KIT) is gratefully acknowledged.
26 Y. Wang, W. J. Hu, W. Song, R. K. V. Lim and Q. Lin, Org. Lett., 2008,
10, 3725–3728.
27 P. An, Z. Yu and Q. Lin, Chem. Commun., 2013, 49, 9920–9922.
28 E. Blasco, Y. Sugawara, P. Lederhose, J. P. Blinco, A.-M. Kelterer and
C. Barner-Kowollik, ChemPhotoChem, 2017, 1, 159–163.
29 S. Techert, S. Schmatz, A. Wiessner and H. Staerk, J. Phys. Chem. A,
2000, 104, 5700–5710.
Conflicts of interest
30 Z. Li, L. Qian, L. Li, J. C. Bernhammer, H. V. Huynh, J.-S. Lee and
S. Q. Yao, Angew. Chem., Int. Ed., 2016, 55, 2002–2006.
There are no conflicts to declare.
This journal is © The Royal Society of Chemistry 2021
3994 | Chem. Commun., 2021, 57, 3991–3994