5
and produced a pure product comparable to fresh catalyst
Figure, 3).
33. Kantam, M. L.; Kumar, K. S.; Raja, K. P. J. Mol. Catal. A: Chemical
006, 247, 186.
3
2
(
4. Lakshmi Kantam, M.; Balasubrahmanyam, V.; Kumar, K. S. Synth.
Commun. 2006, 36, 1809.
5. Matthews, D. P.; Green, J. E.; Shuker, A. J. J. Comb. Chem. 2000, 2, 19.
6. Amantini, D.; Beleggia, R.; Fringuelli, F.; Pizzo, F.; Vaccaro, L. J. Org.
Chem. 2004, 69, 2896.
7. Gyoung, Y. S.; Shim, J.; Yamamoto, Y. Tetrahedron Lett. 2000, 41, 4193.
38. Lakshmi Kantam, M.; Kumar, K.; Sridhar, C. Adv. Synth. Catal. 2005,
347, 1212.
The possible mechanism of synthesis of 5-aryl 1-H-tetrazole
3
3
is depicted in Figure 4. We strongly believe that the Lewis acid
character of Al present on the surface of the catalyst activates
nitrile towards the [3+2] cycloaddition via coordination bond
with the lone pair of electrons of the nitrogen of nitriles. Hence,
the Lewis acidity is responsible for the catalysis.
3
3
9. Aridoss, G.; Laali, K. K. E. J. Org. Chem. 2011, 76, 6343.
40. Bandgar, B.; Kasture S.; Tidke K.; Makone S.S. Green Chem. 2000, 2,
52.
Conclusion
1
4
4
4
1. Ponde, D.; Borate, H.; Sudalai, A.; Ravindranathan, T.; Deshpande, V.
Tetrahedron Lett. 1996, 37, 4605.
2. Upadhya, T.; Daniel, T.; Sudalai, A.; Ravindranathan, T.; Sabu, K. Synth.
Commun. 1996, 26, 4539.
3. Shaikh, N. S.; Gajare, A. S.; Deshpande, V. H.; Bedekar, A. V.
Tetrahedron Lett. 2000, 41, 385.
In conclusion, the activated Fuller’s earth is an inexpensive,
eco-friendly, efficient heterogeneous catalyst for the [3+2]
cycloaddition of sodium azide and a wide variety of nitriles to
form 5-aryl 1-H-tetrazoles with excellent to good yields. The
catalyst can be easily prepared, used, recovered and recycled with
no loss of catalytic activity.
44. Kapuriya, N.; Kakadiya, R.; Savant, M. M.; Pansuriya, A. M.; Bhuva, C.
V.; Patel, A. S.; Pipaliya, P. V.; Audichya, V. B.; Gangadharaiah, S.;
Anandalwar, S. M. Indian J. Chem. Part B 2012, 51, 1032.
4
4
4
Acknowledgements
5. Danielli, J. F. Am. J. Med. Sci. 1959, 238, 391.
6. Valenzuela Díaz, F. R.; Santos, P. D. Quím. Nova 2001, 24, 345.
7. Meshram, G. A.; Deshpande, S. S.; Wagh, P. A.; Vala, V. A.
Tetrahedron Lett. 2014, 55, 3557.
The authors are grateful to University Grant Commission for
their financial support.
4
8. Preparation of activated Fuller’s earth catalyst: Fuller’s earth
Appendix A. Supplementary data
(commercial) 10 g was stirred with 100 ml of distilled water to separate
water soluble material if any. The suspended solid was filtered, washed
with distilled water, and dried in an oven at 100 C for 1h. In a 250 ml
⁰
Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/00.0000/
round bottom flask containing 50 ml of 5% HCl solution, added 5 g of
⁰
solid obtained from above treatment. The mixture was heated at 100
C
References and notes
for 4 h, cool to room temperature, and filtered; the residue was washed
with distilled water till neutrality. Resultant activated fuller's earth was
1
2
3
. Sharghi, H.; Ebrahimpourmoghaddam, S.; Doroodmand, M. M. J.
Organomet. Chem. 2013, 738, 41.
⁰
dried at 100 C till constant weight.
.
Katritzky, A. R.; Rees, C. W. Compr. Heterocycl. Chem.; Pergamon
Press, 1984.
4
9. General procedure for the synthesis of 5-aryl 1-H -tetrazoles: To a DMSO
3 ml) solution of nitrile (1 mmol), and sodium azide (1.5 mmol), was
(
.
Dehghani, F.; Sardarian, A. R.; Esmaeilpour, M. J. Organomet. Chem.
0
added catalyst (10 wt %). The reaction mixture was stirred to 120 C in
an oil bath. The reaction was monitored by TLC. After completion of the
reaction, the mixture was filtered to separate the catalyst. The filtrate was
quenched with water (30 ml), acidified with 5N HCl (20 ml) to
precipitate the product, extracted with ethyl acetate (2 X 20 ml). The
combined organic layers were washed with water, dried over sodium
sulphate and evaporated under reduced pressure to give the product.
2
013, 743, 87.
4
5
6
7
8
9
1
. Herr, R. J. Bioorg. Med. Chem. 2002, 10, 3379.
. Holland, G. F.; Pereira, J. N. J. Med. Chem. 1967, 10, 149.
.
Flippin, L. A. Tetrahedron Lett. 1991, 32, 6857.
. Rhonnstad, P.; Wensbo, D. Tetrahedron Lett. 2002, 43, 3137.
. Ek, F.; Wistrand, L.; Frejd, T. Tetrahedron 2003, 59, 6759.
. Jursic, B. S.; Leblanc, B. W. J. Heterocycl. Chem. 1998, 35, 405.
0. Berridge, M. V.; Herst, P. M.; Tan, A. S. Biotechnol. Annual Rev. 2005,
1
1, 127.
1
1. Modarresi-Alam, A. R.; Khamooshi, F.; Rostamizadeh, M.; Keykha, H.;
Nasrollahzadeh, M.; Bijanzadeh, H.; Kleinpeter, E. J. Mol. Struct. 2007,
8
41, 61.
1
1
1
1
1
2. Patil, A.; Ganguly, S.; Surana, S. J. Chem. Sci. 2010, 122, 443.
3. Malik, S.; Khan, S. A. Med. Chem. Res. 2014, 23, 207.
4. Ostrovskii, V.; Trifonov, R.; Popova, E. Russ. Chem. Bull. 2012, 61, 768.
5. Ellis, G. P.; West, G. B. Prog. Med. Chem.; Elsevier, 2011; 26.
6. Karabanovich, G.; Roh, J.; Soukup, O.; Pávková, I.; Pasdiorová, M.;
Tambor, V.; Stolaříková, J.; Vejsová, M.; Vávrová, K.; Klimešová, V.
Med. Chem. Commun. 2015, 6, 174.
1
1
7. Wittenberger, S. J. Org. Prep. Proced. Int. 1994, 26, 499.
8. Duncia, J. V.; Pierce, M. E.; Santella III, J. B. J. Org. Chem. 1991, 56,
2
395.
1
2
2
2
2
2
2
9. Curran, D. P.; Hadida, S.; Kim, S. Tetrahedron 1999, 55, 8997.
0. Huff, B. E.; Staszak, M. A. Tetrahedron Lett.1993, 34, 8011.
1. Kumar, A.; Narayanan, R.; Shechter, H. J. Org. Chem. 1996, 61, 4462.
2. Koguro, K.; Oga, T.; Mitsui, S.; Orita, R. Synthesis 1998, 910.
3. Demko, Z. P.; Sharpless, K. B. J. Org. Chem. 2001, 66, 7945.
4. Demko, Z. P.; Sharpless, K. B. Org. Lett. 2002, 4, 2525.
5. Lang, L.; Zhou, H.; Xue, M.; Wang, X.; Xu, Z. Mater. Lett. 2013, 106,
4
43.
2
2
6. Du, Z.; Si, C.; Li, Y.; Wang, Y.; Lu, J. Int. J. Mol. Sci. 2012, 13, 4696.
7. Nasrollahzadeh, M.; Bayat, Y.; Habibi, D.; Moshaee, S. Tetrahedron
Lett. 2009, 50, 4435.
2
8. Das, B.; Reddy, C. R.; Kumar, D. N.; Krishnaiah, M.; Narender, R.
Synlett 2010, 391.
2
3
3
3
9. Khalafi-Nezhad, A.; Mohammadi, S. RSC Adv. 2013, 3, 4362.
0. Mani, P.; Singh, A. K.; Awasthi, S. K. Tetrahedron Lett. 2014, 55, 1879.
1. Rama, V.; Kanagaraj, K.; Pitchumani, K. J. Org. Chem. 2011, 76, 9090.
2. Sivaguru, P.; Bhuvaneswari, K.; Ramkumar, R.; Lalitha, A. Tetrahedron
Lett. 2014, 55, 5683.