H. M. I. Osborn et al. / Tetrahedron: Asymmetry 16 (2005) 1935–1937
1937
white solid. This was suspended in a minimum amount
of hexane and the ensuing white solid filtered off to af-
ford 5 (1.191 g, 69%) as a mixture of diastereoisomers.
Mp 174–178 ꢁC; mmax/cmꢀ1 2929 (C–H stretch), 2878
(CH3 stretch), 1461 (CH3, C–C ring stretch), 1406 (C–
C ring stretch), 746 (C–H aromatic bend), 694 (C–H
aromatic bend); dH (250 MHz; CDCl3) 7.63–7.56 (4H,
m, ArH), 7.47–7.33 (11H, m, ArH), 6.34 (1H, s, PhCH),
6.18 (1H, s, H-1), 5.67 (1H, s, PhCH), 4.71 (1H, dd, J
5.0, 8.0, H-4), 4.50 (1H, d, J 5.0, H-3), 4.30–4.21 (2H,
m, H-2, H-6), 4.28 (1H, dd, J 8.0, 9.5, H-5), 3.83 (1H,
t, J 11.5, H-6); dC (62.5 MHz; CDCl3) 138.87 (ArC),
137.41 (ArC), 135.10 (ArCH), 129.74 (ArCH), 129.63
(ArCH), 128.86 (ArCH), 128.76 (ArCH), 128.694
(ArCH), 128.48 (ArC), 126.71 (ArCH), 126.43 (ArCH),
103.56 (PhCH), 102.43 (PhCH), 81.67 (C-1), 78.09 (C-5),
77.08 (C-3), 75.58 (C4), 68.81 (C-6), 63.75 (C-2); m/z (CI)
497 (M+H+, 19%), 390 (25), 339 (49), 233 (44), 105
(100). Found 497.0855. C26H25O5Se requires 497.0867.
3.70 (2H, m, H-4, H-6); 13C NMR (62.5 MHz; CDCl3)
147.31 (C-1), 137.24 (ArC), 133.66 (ArCH), 129.82
(ArCH), 129.79 (ArCH), 128.80 (ArCH), 128.45
(ArCH), 126.64 (ArCH), 109.68 (C-2), 102.23 (PhCH),
80.51 (C-4), 70.74 (C-5), 68.47 (C-6), 68.45 (C-3); m/z
(CI) 390 (M+, 2 %), 338 (2), 316 (51), 85 (25). Found
M+ 390.0352. C19H18O4Se requires 390.0370.
4.3. Direct entry to 4,6-O-Benzylidene-1,2-dideoxy-
D-arabino-hex-1-enitol 3
Phenyl 2,3:4,6-O-benzylidene-1-seleno-a-D-mannopyr-
anoside 5 (500 mg, 1 mmol) was dissolved in anhydrous
THF (25 ml) and cooled to ꢀ40 ꢁC. n-BuLi (1.6 ml,
4 mmol, 2.5 M) was added to the reaction mixture, with
the temperature maintained at ꢀ40ꢁC. After TLC anal-
ysis confirmed the reaction to be complete, satd ammo-
nium chloride (20 ml) was added and the mixture
extracted with ethyl acetate (3 · 20 ml) and washed with
brine (2 · 40 ml). The organic fractions were collected
and dried over MgSO4, filtered and the solvent removed
in vacuo. The crude product was subjected to column
chromatography using silica gel (hexane/ethyl acetate
[1:1]) to afford 3 (199 mg, 85 %) as a white solid with
spectroscopic data identical to that reported above.
4.2. 4,6-O-Benzylidene-1,2-dideoxy-D-arabino-hex-1-
enitol 3 and phenyl 4,6-O-benzylidene-1,2-dideoxy-1-
seleno-D-arabino-hex-1-enitol 6
Phenyl 2,3:4,6-O-benzylidene-1-seleno-a-D-mannopyr-
anoside 5 (500 mg, 1 mmol) was dissolved in anhydrous
THF (25 ml) and cooled to ꢀ40 ꢁC. n-BuLi (0.8 ml,
2 mmol, 2.5 M) was added to the reaction mixture with
the temperature maintained at ꢀ40 ꢁC. After TLC anal-
ysis confirmed complete consumption of starting mate-
rial satd ammonium chloride (20 ml) was added and
the mixture extracted with ethyl acetate (3 · 20 ml)
and washed with brine (2 · 40 ml). The organic fractions
were collected and dried over MgSO4, filtered and the
solvent removed in vacuo. The crude product was
subjected to column chromatography using silica gel
(hexane/ethyl acetate [1:1]) to afford 3 (70 mg, 30%) as
a white solid and 6 (117 mg, 30%) as a yellow oil.
Acknowledgements
We gratefully acknowledge the EPSRC and the Univer-
sity of ReadingÕs Research Endowment Trust Fund for
their financial support of this work.
References
1. For a review of this strategy, see: Seeberger, P. H.;
Bilodeau, M. T.; Danishefsky, S. J. Aldrichim. Acta 1997,
30, 75.
2. For a review of this strategy, see: Seeberger, P. H.;
Danishefsky, S. J. Acc. Chem. Res. 1998, 31, 685.
3. For a recent review of the Ferrier reaction, see: Ferrier,
R. J. Top. Curr. Chem. 2001, 215, 153.
4. Helferich, B.; Mulcahy, E. N.; Ziegler, H. Chem. Ber.
1954, 83, 233.
5. For example see: (a) Sharma, M.; Brown, R. K. Can. J.
Chem. 1966, 44, 2825; (b) Feast, A. A.; Overend, W. G.;
Williams, N. A. J. Chem. Soc. 1965, 7378; (c) Lemieux, R.
U.; Fraga, E.; Watanabe, K. A. Can. J. Chem. 1968, 46,
59; (d) Fraser-Reid, B. Can. J. Chem. 1973, 51, 3950.
Data for 3: mp 140–143 ꢁC, [Lit.5a 142–143];
20
22
½aꢁ ¼ ꢀ15.8 (c 0.83, CHCl3), {lit.5a ½aꢁ ¼ ꢀ19 (c 0.6,
D
D
CHCl3)}; mmax/cmꢀ1 (nujol) 3166 (O–H stretch) 2715
(ArCH stretch), 1635 (C@C stretch), 1406 (C–C ring
stretch), 746 (C–H aromatic bend), 694 (C–H aromatic
bend); dH (250 MHz; CDCl3) 7.46–7.40 (2H, m, ArH),
7.33–7.27 (3H, m, ArH), 6.26 (1H, dd, J 1.5, 6.0, H-1),
5.52 (1H, s, PhCH), 4.69 (1H, dd, J 2.0, 6.0, H-2),
4.44–4.41 (1H, m, H-3), 4.29 (1H, dd, J 4.5, 10.0, H-
6), 3.89–3.68 (3H, m, H-4, H-5, H-6); dC (62.5 MHz;
CDCl3) 144.58 (C-1), 137.41 (ArC), 129.73 (ArCH),
128.79 (ArCH), 126.62 (ArCH), 103.93 (C-2), 102.25
(PhCH), 81.14 (C-4), 68.74 (C-6, C-5), 67.0 (C-3); m/z
(CI) 235 (M+H+, 100%), 129 (71), 105 (51), 85 (25).
Found M+H+ 235.0979. C13H15O4 requires 235.0970.
6. (a) Pedretti, V.; Mallet, J.-M.; Sinay, P. Carbohydr. Res.
¨
1993, 244, 247; (b) Fernandezmayoralas, A.; Marra, A.;
Trumtel, M.; Veyrieres, A.; Sinay, P. Carbohydr. Res.
¨
1989, 188, 81; (c) Fernandezmayoralas, A.; Marra, A.;
Trumtel, M.; Veyrieres, A.; Sinay, P. Tetrahedron Lett.
¨
1989, 30, 2537; (d) Depouilly, P.; Chenede, A.; Mallet, J.
M.; Sinay, P. Tetrahedron Lett. 1992, 33, 8065; (e)
¨
20
Data for 6: ½aꢁ ¼ ꢀ10.0 (c 1.00, CHCl3); mmax/cmꢀ1
Chambers, D. J.; Evans, G. R.; Fairbanks, A. J. Tetra-
hedron: Asymmetry 2003, 14, 1767.
7. Gemmell, N.; Meo, P.; Osborn, H. M. I. Org. Lett. 2003,
5, 1649.
8. Horton, D.; Weckerle, W. Carbohydr. Res. 1975, 44, 227.
9. For a recent review, see: Witzak, Z. J.; Czernecki, S. Adv.
Carbohydr. Chem. Biochem. 1998, 53, 143.
10. Randell, K. D.; Johnston, B. D.; Brown, P. N.; Pinto,
B. M. Carbohydr. Res. 2000, 325, 253.
D
(nujol) 3411 (O–H stretch), 3061, 2955, 2930, 2859
(ArCH stretch), 1734, 1575, 1494, 1474, 1455, 1437,
1380, 1297, 1176, 1077, 1020, 915, 736, 699, 688; H
1
NMR (250 MHz; CDCl3) 7.49–7.39 (4H, m, ArH),
7.30–7.22 (6H, m, ArH), 5.49 (1H, s, PhCH), 5.05 (1H,
d, J 2.5, H-2), 4.45–4.41 (1H, m, H-3), 4.26 (1H, dd,
J 5.0, 10.5, H-6), 3.90 (1H, dd, J 5.0, 10.0, H-5), 3.79–