Use of Aromatic Radical-Anions in the Absence of THF
J. Am. Chem. Soc., Vol. 123, No. 15, 2001 3479
The ability of organolithiums to remove a proton from the
Scheme 1
2-position of THF is sometimes a major problem especially for
the more basic organolithiums or at temperatures above about
5
,28-30
0
°C.
In other cases, as in that described below of the
(10) The superior versatility of compounds containing the phenylthio
group as substrates for reductive lithiation arises from their almost unique
ease of construction, particularly by methods involving C-C bond formation
but also by the ability of the phenylthio group to enter a molecule as a
nucleophile, electrophile, or radical. In addition, the substrates are almost
always able to withstand the powerful nucleophiles/bases that are present
in the reductive lithiation conditions. For example, alkyl halides, sulfates,
sulfonates, etc. (see below) are subject to ready nucleophilic substitution,
but most seriously to base-induced elimination, thus limiting their use largely
to the preparation of primary alkyllithiums unless an aryl or vinyl group is
present to increase the rate of the reductive lithiation and favor it over
competing processes.
Scheme 2
(11) Reviews of those in which the aromatic is present in only catalytic
amounts: Yus, M. Chem. Soc. ReV. 1996, 155-161. Ram o´ n, D. J.; Yus,
M. Eur. J. Org. Chem. 2000, 225-237. In some of the many cases described
in these reviews, it is not always certain that the organolithium is actually
produced since the electrophile, usually a carbonyl compound, is present
during the reductive lithiation. It seems likely in these cases that a fairly
stable ketyl is produced first and that it reacts with the radical intermediate
in the reductive lithiation of the substrate. However, it appears likely that
many of the substrates could be converted to alkyllithiums under the
stoichiometric conditions that are probably necessary to take advantage of
the new reductive lithiation procedure introduced in the present article.
(12) Sargent, G. D.; Browne, M. W. J. Am. Chem. Soc. 1967, 89, 2788.
Wilson, S. E. Tetrahedron Lett. 1975, 4651-4654. Caine, D.; Frobese, A.
S. Tetrahedron Lett. 1978, 883-86. Barluenga, J.; Fl o´ rez, J.; Yus, M. J.
Chem. Soc., Perkin Trans. 1 1983, 3019-26. Beau, J.-M.; Prandi, J.
Tetrahedron Lett. 1989, 30, 4517-20. Ram o´ n, D. J.; Yus, M. Tetrahedron
Lett. 1990, 31, 3763-3766. Rawson, D. J.; Meyers, A. I. Tetrahedron Lett.
cyclization of benzyllithiums which were generated by attack
of homo- and bishomoallyllithiums on R-methylstyrene, the
presence of THF encourages an unwanted side reaction. Thus,
it was deemed desirable to find an alternative solvent in which
radical-anions could be generated and which could either be
used for the subsequent reactions or be readily replaced by
suitable solvents.
1991, 32, 2095-98. Wittman, V.; Kessler, H. Angew. Chem., Int. Ed. Engl.
993, 32, 1091-93. Oku, A.; Ose, Y.; Kamada, T.; Yoshida, T. Chem.
1
Lett. 1993, 573-76. Vlaar, C. P.; Klumpp, G. W. Angew. Chem., Int. Ed.
Engl. 1993, 32, 574-76. Barluenga, J.; Montserrat, J. M.; Fl o´ rez, J. J. Org.
Chem. 1993, 58, 5976-80. Kondo, Y.; Murata. N.; Sakamoto, T. Hetero-
cycles 1994, 37, 1467-68. Lesimple, P.; Beau, J.-M. Bioorg. Med. Chem.
994, 2, 1319-30. Tamao, K.; Kawachi, A. Organometallics 1995, 14,
Generation of a Lithium Aromatic Radical-Anion in the
Absence of THF
In preliminary experiments, the formation of several lithium
31
radical-anions, lithium p,p′-di-tert-butylbiphenylide (LDBB),
32
(13) Beau, J.-M.; Sina y¨ , P. Tetrahedron Lett. 1985, 26, 6185-88, 6189-
lithium 1-(dimethylamino)naphthalenide (LDMAN), and lithium
2,6-di-tert-butylnaphthalenide (LDBN), in a variety of solvents
other than THF was studied in an attempt to find such a solvent
and the proper radical-anion. Bis(phenylthio)methane was used
as a reductive lithiation substrate to estimate the approximate
yields of radical-anions in a specified solvent by noting when
during addition of the thioacetal the color of the radical-anion
disappeared (Scheme 2).
(14) Guijarry, D.; Mancheno, B.; Yus, M. Tetrahedron Lett. 1992, 33,
5
597-5600. Guijarro, D.; Guillena, G.; Mancheno, B.; Yus, M. Tetrahedron
1
994, 50, 3427-36.
(15) Zeller, E.; Sajus, H.; Grierson, D. S. Synlett 1991, 44-46.
Buckmelter, A. J.; Powers, J. P.; Rychnovsky, S. D. J. Am. Chem. Soc.
998, 120, 5589-90.
16) Agawa, T.; Ohshiro, Y. Synthesis 1980, 933-935. Hoffmann, R.;
1
Attempted generation of LDBB in other solvents, by stirring
a suspension of lithium wire cuttings and DBB together in the
selected solvent, was unsuccessful (Table 1). When diethyl ether
was used, no radical-anion was formed even at ambient
(
Br u¨ ckner, R. Chem. Ber. 1992, 125, 1957-63. Krief, A.; Hobe, M.; Badaoui,
E.; Bousbaa, J.; Dumont, W.; Nazih, A. Synlett 1993, 707-9. Krief, A.;
Nazih, A.; Hobe, M. Tetrahedron Lett. 1995, 36, 8111-14. Krief, A.; Nazih,
A. Tetrahedron Lett. 1995, 36, 8115-18.
(
17) Eisch, J. J.; Jacobs, A. M. J. Org. Chem. 1963, 28, 2145-46.
Lansbury, P. T.; Caridi, F. J. J. Chem. Soc., Chem. Commun. 1970, 714-
5. Ireland, R. E.; Smith, M. G. J. Am. Chem. Soc. 1988, 110, 854-60.
Sa a´ , J. M.; Ballester, P.; Dey a´ , P. M.; Cap o´ , M.; Garc ´ı as, X. J. Org. Chem.
(23) Mudryk, B.; Cohen, T. J. Org. Chem. 1989, 54, 5657-59. Mudryk,
B.; Cohen, T. J. Org. Chem. 1991, 56, 5760-61. Hashemzadeh, M.; Howell,
A. R. Tetrahedron Lett. 2000, 41, 1855-58. Hashemzadeh, M.; Howell,
A. R. Tetrahedron Lett. 2000, 41, 1859-62.
(24) Oikawa, M.; Oikawa, H.; Ichihara, A. Tetrahedron 1995, 51, 6237-
54. Dvorak, C. A.; Rawal, V. H. J. Chem. Soc., Chem. Commun. 1997,
2381-82.
(25) Karaman, R.; Fry, J. L. Tetrahedron Lett. 1989, 30, 6267-70.
(26) Karaman, R.; Fry, J. L. Tetrahedron Lett. 1989, 30, 4935-38.
(27) Rawal, V. H.; Dufour, C.; Iwasa, S. Tetrahedron Lett. 1995, 19-
22.
1
1
1
2
996, 61, 1035-46. Azzena, U.; Demartis, S.; Melloni, G. J. Org. Chem.
996, 61, 3-19. Azzena, U.; Demartis, S.; Pilo, L.; Piras, E. Tetrahedron
000, 56, 8375-82.
(
18) Mudryk, B.; Cohen, T. J. Am. Chem. Soc. 1991, 113, 1866-67.
(19) Block, E.; Guo, C.; Thiruvazhi, M.; Toscano, P. J. J. Am. Chem.
Soc. 1994, 116, 9403-04.
20) Azzena, U.; Melloni, G.; Pisano, L.; Sechi, B. Tetrahedron Lett.
(
1
994, 35, 6759-62.
(28) Rychnovsky, S. D.; J. Org. Chem. 1989, 54, 4982-84. Jung, M.
E.; Blum, R. B. Tetrahedron Lett. 1977, 3791-94.
(29) Krief, A.; Barbeaux, P. Synlett 1990, 511-514.
(30) (a) Chen, F.; Mudryk, B.; Cohen, T., Tetrahedron 1994, 50, 12793-
12810. (b) Cheng, D.; Zhu, S.; Liu, X.; Norton, S. H.; Cohen, T. J. Am.
Chem. Soc. 1999, 121, 10241-42.
(
21) Yus, M.; Foubelo, F. ReV. Heteroat. Chem. 1997, 17, 73-107.
22) Bartmann, E. Angew. Chem., Int. Ed. Engl. 1986, 25, 653. Cohen,
(
T.; Jeong, I.-H.; Mudryk, B.; Bhupathy, M.; Awad, M. M. A. J. Org. Chem.
1
990, 55, 1528-36. Mudryk, B.; Cohen, T. Org. Synth. 1995, 72, 173-9.
Behnke, D.; Hennig, L.; Findeisen, M.; Welzel, P.; M u¨ ller, D.; Thormann,
M.; Hofmann, H.-J. Tetrahedron 2000, 56, 1081-95. Falvello, L. R.;
Foubelo, F.; Soler, T.; Yus, M. Tetrahedron: Asymmetry 2000, 11, 2063-
(31) Freeman, P. K.; Hutchinson, L. L. J. Org. Chem. 1980, 22, 1924-
30.
6
6.
(32) Cohen, T.; Matz, J. R. Synth. Commun. 1980, 10, 311-17.