LETTER
Synthesis of 4-Aza-podophyllotoxin Derivatives
2789
and filtered to give the crude product, which was further
purified by recrystallization (DMF–EtOH) to give pure 4-
aza-podophyllotoxin derivatives 6.
Acknowledgment
We are grateful for financial support from the National Natural
Science Foundation of China (No. 20372057), Natural Science
Foundation of the Jiangsu Province (No. BK2006033), the Natural
Science Foundation of Jiangsu Education Department (No.
01KJB15008), and the Key Lab of Biotechnology for Medicinal
Plants of Jiangsu Province (01AXL 14).
Compound 6c: Yellow solid; mp > 300 °C. IR (KBr): 3233,
3181, 3119, 3075, 2985, 2931, 1712, 1640, 1545, 810, 756,
689 cm–1. 1H NMR (DMSO-d6, 400 MHz): d = 10.01 (1 H,
s, NH), 7.46 (2 H, d, J = 8.4 Hz, ArH), 7.16 (2 H, d, J = 8.0
Hz, ArH), 6.96 (1 H, d, J = 7.6 Hz, ArH), 6.85–6.82 (2 H, m,
ArH), 5.00 (1 H, s, CH), 4.97–4.85 (2 H, m, CH2), 2.13 (3 H,
s, CH3). Anal. Calcd for C18H14BrNO2: C, 60.69; H, 3.96; N,
3.93. Found: C, 60.75; H, 3.90; N, 3.89. Compound 6h:
Yellow solid; mp >300 °C. IR (KBr): 3276, 3059, 2927,
2858, 1727, 1645, 1538, 1509, 1488, 803, 782, 758, 733, 723
cm–1. 1H NMR (DMSO-d6, 400 MHz): d = 10.28 (1 H, s,
NH), 8.22 (1 H, d, J = 8.4 Hz, ArH), 7.86 (1 H, d, J = 8.0
Hz, ArH), 7.65–7.49 (3 H, m, ArH), 7.30–7.27 (2 H, m,
ArH), 7.19–7.07 (3 H, m, ArH), 5.24 (1 H, s, CH), 5.11–4.97
(2 H, m, CH2). Anal. Calcd for C21H14FNO2: C, 76.12; H,
4.26; N, 4.23. Found: C, 76.23; H, 4.20; N, 4.16. Compound
6q: Yellow solid; mp >300 °C. IR (KBr): 3231, 3108, 3057,
2958, 2934, 1722, 1650, 1600, 1584, 1532, 814, 777, 742
cm–1. 1H NMR (DMSO-d6, 400 MHz): d = 10.27 (1 H, s,
NH), 7.86–7.79 (3 H, m, ArH), 7.39–7.27 (3 H, m, ArH),
7.11 (2 H, d, J = 8.8 Hz, ArH), 6.75 (2 H, d, J = 8.4 Hz,
ArH), 5.61 (1 H, s, CH), 4.98–4.87 (2 H, m, CH2), 3.64 (3 H,
s, OCH3). Anal. Calcd for C22H17NO3: C, 76.95; H, 4.99; N,
4.08. Found: C, 77.01; H, 4.95; N, 4.02.
References and Notes
(1) For an overview of multicomponent reactions, see: (a) Zhu,
J.; Bienaymé, H. Multicomponent Reactions; Wiley-VCH:
Weinheim, 2005. For recent reviews see: (b) Ramón, D. J.;
Yus, M. Angew. Chem. Int. Ed. 2005, 44, 1602. (c) Simon,
C.; Constantieux, T.; Rodriguez, J. Eur. J. Org. Chem. 2004,
4957. (d) Zhu, J. Eur. J. Org. Chem. 2003, 1133. (e) Orru,
R. V. A.; de Greef, M. Synthesis 2003, 1471. (f) Nair, V.;
Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.;
Mathen, J. S.; Balagopal, L. Acc. Chem. Res. 2003, 36, 899.
(g) Bienaymé, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem.
Eur. J. 2000, 6, 3321. (h) Dömling, A.; Ugi, I. Angew.
Chem. Int. Ed. 2000, 39, 3168. (i) Tietze, L. F.; Modi, A.
Med. Res. Rev. 2000, 20, 304.
(2) (a) Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250.
(b) Lidström, P.; Tierney, J.; Wathey, B.; Westman, J.
Tetrahedron 2001, 57, 9225. (c) Gabriel, C.; Gabriel, S.;
Grant, E. H.; Halstead, B. S. J.; Mingos, D. M. P. Chem. Soc.
Rev. 1998, 27, 213.
(3) (a) Varma, R. S. Advances in Green Chemistry: Chemical
Syntheses Using Microwave Irradiation; AstraZeneca
Research Foundation India: Bangalore, India, 2002.
(b) Varma, R. S. In Microwaves in Organic Synthesis;
Loupy, A., Ed.; Wiley-VCH: Weinheim, 2002, 181.
(c) Larhed, M.; Moberg, C.; Hallberg, A. Acc. Chem. Res.
2002, 35, 717. (d) Kappe, C. O.; Stadler, A. In Microwaves
in Organic Synthesis; Loupy, A., Ed.; Wiley-VCH:
Weinheim, 2002, 405.
(4) (a) Li, C. J.; Chan, T. H. Organic Reactions in Aqueous
Media; John Wiley & Sons: New York, 1997. (b)Grieco,P.
A. Organic Synthesis in Water; Blackie Academic &
Professional: London, 1998. (c) Lubineau, A.; Auge, J. In
Modern Solvents in Organic Synthesis; Knochel, P., Ed.;
Springer-Verlag: Berlin, 1999.
(5) (a) Breslow, R.; Maitra, U.; Rideout, D. C. Tetrahedron Lett.
1983, 24, 1901. (b) Tan, X. H.; Hou, Y. Q.; Huang, C.; Liu,
L.; Guo, Q. X. Tetrahedron 2004, 60, 6129.
(6) (a) Copley, S. D.; Knowles, J. R. J. Am. Chem. Soc. 1987,
109, 5008. (b) Khosropour, A. R.; Khodaei, M. M.;
Kookhazadeh, M. Tetrahedron Lett. 2004, 45, 1725.
(7) (a) Hitotsuyanagi, Y.; Kobayashi, M.; Fukuyo, M.; Takeya,
K.; Itokawa, H. Tetrahedron Lett. 1997, 38, 8295.
(b) Hitotsuyanagi, Y.; Fukuyo, M.; Tsuda, K.; Kobayashi,
M.; Ozeki, A.; Itokawa, H.; Takeya, K. Bioorg. Med. Chem.
Lett. 2000, 10, 315. (c) Tratrat, C.; Giorgi-Renault, S.;
Husson, H. P. Org. Lett. 2002, 4, 3187.
(8) (a) Tu, S. J.; Miao, C. B.; Gao, Y.; Fang, F.; Zhuang, Q. Y.;
Feng, Y. J.; Shi, D. Q. Synlett 2004, 255. (b) Tu, S. J.; Li, T.
J.; Shi, F.; Wang, Q.; Zhang, J. P.; Xu, J. N.; Zhu, X. T.;
Zhang, X. J.; Zhu, S. L.; Shi, D. Q. Synthesis 2005, 3045.
(9) Compounds 6; General Procedure: All reactions were
performed in a monomodal EmrysTM Creator from Personal
Chemistry, Uppsala, Sweden. In a 10-mL EmrysTM reaction
vial, aldehyde 3 (1 mmol), aromatic amine 4 (1 mmol),
tetronic acid 5 (1 mmol), and H2O (2 mL) were mixed and
then capped. The mixture was irradiated at 150 W and 100
°C for a given time. The reaction mixture was cooled to r.t.
(10) (a) Anzini, M.; Cappelli, A.; Vomero, S.; Cagnotto, A.;
Skorupska, M. Med. Chem. Res. 1993, 3, 44. (b) Quraishi,
M. A.; Thakur, V. R.; Dhawan, S. N. Indian J. Chem., Sect.
B: Org. Chem. Incl. Med. Chem. 1989, 28, 891.
(c) Yamato, M.; Takeuchi, Y.; Hashigaki, K.; Ikeda, Y.;
Ming-rong, C.; Takeuchi, K.; Matsushima, M.; Tsuruo, T.;
Tashiro, T.; Tsukagoshi, S.; Yamashita, Y.; Nakano, H. J.
Med. Chem. 1989, 32, 1295. (d) Deady, L. W.; Desneves, J.;
Kaye, A. J.; Finlay, G. J.; Baguley, B. C.; Denny, W. A.
Bioorg. Med. Chem. 2000, 8, 977. (e) Brooks, J. R.;
Berman, C.; Hichens, M.; Primka, R. L.; Reynolds, G. F.;
Rasmusson, G. H. Proc. Soc. Exp. Biol. Med. 1982, 169, 67.
(f) Rampa, A.; Bisi, A.; Belluti, F.; Gobbi, S.; Valenti, P.;
Andrisano, V.; Cavrini, V.; Cavalli, A.; Recanatini, M.
Bioorg. Med. Chem. 2000, 8, 497. (g) Venugopalan, B.;
Bapat, C. P.; DeSouza, E. P.; DeSouza, N. J. Indian J.
Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1992, 31, 35.
(11) Compounds 8; General Procedure: In a 10-mL EmrysTM
reaction vial aldehyde 3 (1 mmol), aromatic amine 4 (1
mmol), 1:3-indanedione 7 (1 mmol), and H2O (2 mL) were
mixed and then capped. The mixture was irradiated at 150 W
and 100 °C for a given time. The reaction mixture was
cooled to r.t. and filtered to give the crude product which was
further purified by recrystallization (DMF–EtOH) to give
pure indeno[1,2-b]quinoline derivatives 8. Compound 8m:
Yellow solid; mp >300 °C. IR (KBr): 3220, 3065, 2855,
1710, 1662, 1574, 1533, 1485, 858, 738, 645 cm–1. 1H NMR
(DMSO-d6, 400 MHz): d = 10.99 (1 H, s, NH), 7.94 (1 H, d,
J = 8.8 Hz, ArH), 7.87 (2 H, t, J = 8.0 Hz, ArH), 7.63 (1 H,
d, J = 7.2 Hz, ArH), 7.53 (1 H, d, J = 8.8 Hz, ArH), 7.49–
7.34 (6 H, m, ArH), 7.27 (1 H, d, J = 8.0 Hz, ArH), 7.20 (2
H, d, J = 8.4 Hz, ArH), 5.80 (1 H, s, CH). Anal. Calcd for
C26H16BrNO: C, 71.25; H, 3.68; N, 3.20. Found: C, 71.34; H,
3.62; N, 3.10.
(12) (a) Proks, V.; Holik, M. Collect. Czech. Chem. Commun.
2004, 69, 1566. (b) Rothenberg, G.; Downie, A. P.; Raston,
C. L.; Scott, J. L. J. Am. Chem. Soc. 2001, 123, 8701.
(c) Froeyen, P. Phosphorus, Sulfur Silicon Relat. Elem.
1993, 81, 37.
Synlett 2006, No. 17, 2785–2790 © Thieme Stuttgart · New York