10.1002/ejoc.202001533
European Journal of Organic Chemistry
COMMUNICATION
a broad range of different alcohols (Figure 4). Remarkably,
alcohols with allyl, alkynyl and cyanide groups are converted to
products 18, 20 and 21 in excellent yields of 66 - 98%. Even the
Boc protecting group is tolerated, both as part of the alcohol
yielding product 22 or as part of the olefin substrate 23. The
photoredox catalyzed conversion of 4 with 3-(Boc-amino)1-
propanol gives product 22 in 85% yield. The methoxylation of the
Boc-protected substrate 23 gives product 24 in 80% yield. These
results show that this type of photocatalysis is also well suited for
alkoxylation of acid labile substrates and for peptide chemistry
based on Boc-protected building blocks.
level of sustainability is achieved by the use of light and the use
of an organic chromophore as photoredox catalyst.
Acknowledgements
This work was financially supported by the Deutsche
Forschungsgemeinschaft (DFG, grant Wa 1386/16-2) and
the Karlsruhe Institute of Technology (KIT).
Keywords: phenothiazine • chromophore • photocatalysis •
energy transfer • radical
[1]
a) F. Glaser, C. Kerzig, O. S. Wenger, Angew. Chem. Int. Ed. 2020, 59,
10266-10284; b) T. H. Rehm, ChemPhotoChem 2019, 3, 1-21; c) F.
Strieth-Kalthoff, M. J. James, M. Teders, L. Pitzer, F. Glorius, Chem. Soc.
Rev. 2018, 47, 7190-7202; d) D. M. Arias-Rotondo, J. K. McCusker,
Chem. Soc. Rev. 2016, 45, 5803-5820.
[2]
a) S. K. Pagire, T. Föll, O. Reiser, Acc. Chem. Res. 2020, 53, 782-791;
b) N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075-10166;
c) R. C. McAtee, E. J. McClain, C. R. J. Stephenson, Trends Chem. 2019,
1, 111-125; d) L. Marzo, S. K. Paigre, O. Reiser, B. König, Angew. Chem.
Int. Ed. 2018, 57, 10034-10072; f) L. Buzzetti, G. E. M. Crisenza, P.
Melchiorre, Angew. Chem. Int. Ed. 2019, 58, 3730-3747; g) L. Capaldo,
D. Ravelli, Eur. J. Org. Chem. 2020, 2783-2806; h) D. Ravelli, D. Dondi,
M. Fagnoni, A. Albini, Chem. Soc. Rev. 2009, 38, 1999-2011.
D. P. Hari, B. König, Chem. Commun. 2014, 50, 6688-6699.
I. Ghosh, L. Marzo, A. Das, R. Shaikh, B. König, Acc. Chem. Res. 2016,
49, 1566-1577.
[3]
[4]
[5]
[6]
[7]
K. A. Margrey, D. A. Nicewicz, Acc. Chem. Res. 2016, 49, 1997-2006.
B. Zilate, C. Fischer, C. Sparr, Chem. Commun. 2020, 56, 1767-1775.
J. Mateos, F. Rigodanza, A. Vega-Penaloza, A. Sartorel, M. Natali, T.
Bortolato, G. Pelosi, X. Companyó, M. Bonchio, L. Dell'Amico, Angew.
Chem. Int. Ed. 2020, 59, 1303-1312.
Figure 4. Substrate scope for the reaction of α-methyl styrene (4) with respect
to different types of alcohols R’-OH to products 15-22. Additionally, the Boc-
protected substrate 23 was methoxylated to product 24. General reaction
conditions: 0.17 mmol 4, alcohol (R’-OH) as solvent, 10mol% 2, 35 °C, 65 h,
365 nm LEDs. The yields were determined by 1H NMR by using an internal
standard (CH2Cl2).
[8]
[9]
E. Speckmeier, T. G. Fischer, K. Zeitler, J. Am. Chem. Soc. 2018, 140,
15353-15365.
L. D. Elliott, S. Kayal, M. W. George, K. Booker-Milburn, J. Am. Chem.
Soc. 2020, 142, 14947-14956.
[10] a) C. Fischer, C. Kerzig, B. Zilate, O. S. Wenger, C. Sparr, ACS Catal.
2020, 10, 210-215; b) A. Vega-Peñaloza, J. Mateos, X. Companyó, M.
Escudero-Casao, L. Dell’Amico, Angew. Chem. Int. Ed. 2020, DOI:
10.1002/anie.202006416.
[11] M. J. Ohlow, B. Moosmann, Drug. Discov. Today 2011, 16, 119-131.
[12] A. F. Garrido-Castro, N. Salaverri, M. C. Maestro, J. Alemán, Org Lett.
2019, 21, 5295-5300.
In conclusion, we showed that the photoredox catalytic addition of
alcohols to non-activated terminal alkyl olefins is obtained by the
use of N,N-diisobutylamino-phenylphenothiazine 2. Its excited
state redox potential is sufficiently high to promote the
photoreduction of non-activated alkyl olefins and the subsequent
nucleophilic addition of MeOH. Despite the long irradiation times
and the moderate yields, this is -to the best of our knowledge- the
first time that alkyl olefins have been at all converted by
photoredox catalysis. In particular, this will offer new synthetic
routes in polymer chemistry. We demonstrate a broad substrate
scope not only with respect to the non-activated olefins as
substrates but also with respect to a variety of alcohols with
additional functional groups. In particular, allyl, alkynyl and
cyanide groups are tolerated. Even the very acid labile Boc
protecting group is tolerated, both as part of olefin and as part of
the alcohol as substrates. In general, this photoredox catalysis
complements conventional thermal addition reactions with
alcohols to products with Markovnikov-type regioselectivity, and
in particular for Boc-protected amino acid building blocks in
peptide chemistry. Since no additives are needed, the reaction
conditions are extremely mild and simple. Furthermore, a high
[13] E. H. Discekici, N. J. Treat, S. O. Poelma, K. M. Mattson, Z. M. Hudson,
Y. Luo, C. J. Hawker, J. Read de Alaniz, Chem. Commun. 2015, 51,
11705-11708.
[14] a) S. Dadashi-Silab, X. Pan, K. Matyjaszewski, Chemistry 2017, 23,
5972-5977; b) X. Pan, C. Fang, M. Fantin, N. Malhotra, W. Y. So, L. A.
Peteanu, A. A. Isse, A. Gennaro, P. Liu, K. Matyjaszewski, J. Am. Chem.
Soc. 2016, 138, 2411-2425.
[15] (a) D. Rombach, H.-A. Wagenknecht, Angew. Chem. Int. Ed. 2020, 59,
300-303; (b) D. Rombach, H.-A. Wagenknecht, ChemCatChem 2018, 10,
2955-2961.
[16] F. Speck, D. Rombach, H. A. Wagenknecht, Beilstein J. Org. Chem.
2019, 15, 52-59.
[17] J. A. Murphy, T. A. Khan, S. Z. Zhou, D. W. Thomson, M. Mahesh, Angew.
Chem. Int. Ed. 2005, 44, 1356-1360.
[18] (a) K. D. Ziegler, H., H. Chem. Ber. 1957, 90, 1170-1115; (b) S. Ouardad,
A.-L. Wirotius, S. Kostjuk, F. Ganachaud, F. Peruch, RSC Adv. 2015, 5,
59218-59225.
[19] R. S. Ruoff, K. M. Kadish, P. Boulas, E. C. M. Chen, J. Phys. Chem. 1995,
99, 8843-8850.
[20] J. Mattay, Tetrahedron 1985, 41, 2405-2417.
[21] A. Penner, E. Bätzner, H.-A. Wagenknecht, Synlett 2012, 23, 2803-2807.
3
This article is protected by copyright. All rights reserved.