Journal of the American Chemical Society
Page 6 of 7
2810. (b) Kanbayashi, N.; Takenaka, K.; Okamura, T.-A.; Onitsuka, K.
of water as a nucleophile in allylic substitution see:Lüssen, B. J.; Gais, H.-
J. Palladium-catalyzded deracemization of allylic carbonates in water with
formation of allylic alcohols: Hydrogen carbonate ion as nucleophile in the
palladium-catalyzed allylic substitution and kinetic resolution J. Am. Chem.
Soc. 2003, 125, 6066. .
Asymmetric auto-tandem catalysis with aplanar-chiral ruthenium complex:
Sequential allylic amidation and atom-transfer radical cyclization. Angew.
Chem. Int. Ed. 2013, 52, 4897. (c) Lu, B.; Feng, B.; Ye, H.; Chen, J.-R.;
Xiao, W.-J. Pd/phosphoramidite thioether complex-catalyzed asymmetric
N-allylic alkylation of hydrazones with allylic acetates. Org. Lett. 2018, 20,
3473.
1
2
3
4
5
6
7
8
.
(11) (a) Defieber, C.; Ariger, M. A.; Moriel, P.; Carreira, E. M.
Iridium‐catalyzed synthesis of primary allylic amines from allylic alcohols:
Sulfamic acid as ammonia equivalent. Angew. Chem. Int. Ed. 2007, 46,
3139. (b) Hamilton, J. Y.; Sarlah, D.; Carreria, E. M. Iridium-catalyzed
enantioselective allyl-alkene coupling. J. Am. Chem. Soc. 2014, 136, 3006.
(c) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Enantio-
and diastereodivergent dual catalysis: α-allylation of branched aldehydes.
Science 2013, 340, 1065. (e) Sandmeier, T.; Krautwald, S.; Zipfel, H. F.
Carreira, E. M. Stereodivergent dual catalyitc α-allylation of protected α-
amino and α-hydroxyacetaldehydes. Angew. Chem. Int. Ed. 2015, 54,
14363. (d) Rössler, S. L.; Krautwald, S.; Carreira, E. M. Study of
(4) For reviews see: (a) Dalko, P. I.; Moisan, L. In the golden age of
organocatalysis. Angew. Chem. Int. Ed. 2004, 43, 5138. (b) Jimeno, C.
Water in asymmetric organocatalytic systems: A global perspective. Org.
Biomol. Chem. 2016, 14, 6147. For selected examples see: (c) Hayashi, Y.;
Sumiya, T.; Takahashi, J.; Gotoh, H.; Urushima, T.; Shoji, M. Highly
diastereo- and enantioselective direct aldol reactions in water. Angew.
Chem. Int. Ed. 2006, 45, 958. (d) Hayashi, Y.; Aratake, S.; Okano, T.;
Takahashi, J.; Sumiya, T.; Shoji, M. Combined proline-surfactant
organocatalyst for the highly diastereo- and enantioselective aqueous direct
cross-aldol reaction of aldehydes. Angew. Chem. Int. Ed. 2006, 45, 5527.
(e) Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.;
Barbas; C. F., III Organocatalytic direct asymmetric aldol reactions in
water. J. Am. Chem. Soc. 2006, 128, 734. (f) Hayashi, Y.; Samanta, S.;
Gotoh, H.; Ishikawa, H. Asymmetric Diels-Alder reaction of
α,β‐unsaturated aldehydes catalyzed by a diarylprolinol silyl ether salt in
the presence of water. Angew. Chem. Int. Ed. 2008, 47, 6634. (g) Zheng, Z.;
Perkins, B. L.; Ni, B. Diarylprolinol silyl ether salts as new, efficient water-
soluble, and recyclable organocatalysts for the asymmetric Michael
addition on water. J. Am. Chem. Soc. 2010, 132, 50. (h) Zotova, N.; Franzke,
A.; Armstrong, A.; Blackmond, D. G. Clarification of the role of water in
proline-mediated aldol reactions. J. Am. Chem. Soc. 2007, 129, 15100.
(5) (a) Markert, M.; Scheffler, U; Mahrwald, R. Asymmetric histidine-
catalyzed cross-aldol reactions of enolizable aldehydes: Access to defined
configured quaternary stereogenic centers. J. Am. Chem. Soc. 2009, 131,
16642. (b) Greenberg, W. A., Varvak, A.; Hanson, S. R.; Wong, K.; Huang,
H.; Chen, P.; Burk, M. J. Development of an efficient, scalable aldolase-
catalyzed process for enantioselective synthesis of statin intermediates.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5788.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
intermediates
in
Iridium-(phosphoramidite,olefin)-catalyzed
enantioselective allylic substitution. J. Am. Chem. Soc. 2017, 139, 3603
(12) (a) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry
Toward Heterocycles and Natural Products. Vol 59, Padwa, A., Pearson,
W. H., Eds.; John Wiley & Sons: Hoboken, 2003. (b) Nájera, C.; Sansano,
J. M.; Yus, M. 1,3-Dipolar cycloadditions of azomethine imines. Org.
Biomol. Chem. 2015, 13, 8596.
(13) (a) Lemay, M.; Ogilvie, W. W. Aqueous enantioselective
organocatalytic Diels-Alder reactions employing hydrazide catalysts. A
new scaffold for organic acceleration. Org. Lett. 2005, 7, 4141. (b) Li, Q.;
Wong, W.-Y., Chan, W.-H., Lee A. W. M. Second generation CaSH
(camphor sulfonyl hydrazine) organocatalysis. Asymmetric Diels-Alder
reactions and isolation of the catalytic intermediate. Adv. Synth. Catal.
2010, 352, 2142.
(14) Granados, A.; del Olmo, A. Peccati, F.; Billard, T.; Sodupe, M.;
Vallribera, A. Fluorous I-carbidopa precursors: Highly enantioselective
synthesis and computational prediction of bioactivity. J. Org. Chem. 2018,
83, 303.
(6) For a review see: (a) Kolb, H. C.; VanNieuwenhze, M. S; Sharpless,
K. B. Catalytic asymmetric dihydroxylation. Chem. Rev. 1994, 94, 2483.
For selected examples see: (b) Wang, L.; Sharpless, K. B. Catalytic
asymmetric dihydroxylation of cis-substituted olefins. J. Am. Chem. Soc.
1992, 114, 7568. (c) Crispino, G. A.; Ho, P. T.; Sharpless, K. B. Selective
perhydroxylation of squalene: taming the arithmetic demon. Science, 1993,
259, 64. (d) Denmark, S. E.; Wu, Z. The development of chiral, nonracemic
dioxiranes for the catalytic, enantioselective epoxidation of alkenes. Synlett,
1999, S1, 847. (e) Malkov, A. V.; Czemerys, L.; Malyshev, D. A Vanadium-
catalyzed asymmetric epoxidation of allylic alcohols in water. J. Org.
Chem. 2009, 74, 3350. (f) Shen, D.; Saracini, C.; Lee, Y.-M.; Sun, W.;
Fukuzumi, S.; Nam, W. Photocatalytic asymmetric epoxidation of terminal
olefins using water as an oxygen source in the presence of a mononuclear
non-heme chiral manganese complex. J. Am. Chem. Soc. 2016, 138, 15857.
(7) (a) Kumar, A.; Oehme, G.; Roque, J. P.; Schwarze, M.; Selke, R.
Increase in the enantioselectivity of asymmetric hydrogenation in water
influenced by surfactants or polymerized micelles. Angew. Chem. Int. Ed.
1994, 33, 2197. (b) Dwars, T.; Schmidt, U.; Fischer, C.; Grassert, I.; Kempe,
R.; Fröhlich, R.; Drauz, K.; Oehme, G. Synthesis of optically active α-
amino-phosphinic acids by catalytic asymmetric hydrogenation in organic
solvents and aqueous micellar media. Angew. Chem. Int. Ed. 1996, 37,
2851. (c) Li, X.; Wu, X.; Chen, W.; Hancock, F. E.; King, F.; Xiao, J.
Asymmetric transfer hydrogenation in water witha supported Noyori-
Ikariya catalyst. Org. Lett. 2004, 6, 3321. (d) Li, J.; Tang, Y.; Wang, Q.; Li,
X.; Cun, L.; Zhang, X.; Zhu, J.; Li, L.; Deng, J. Chiral surfactant-type
catalyst for asymmetric reduction of aliphatic ketones in water. J. Am.
Chem. Soc. 2012, 134, 18522. (e) Soni, R.; Hall, T. H.; Mitchell, B. P.;
Owen, M. R.; Wills, M. Asymmetric reduction of electron-rich ketones with
thethered Ru(II)/TSDPEN catalysts using formic acid/triethylamine or
aqueous sodium formate. J. Org. Chem. 2015, 80, 6784.
(15) Niemeier, J. K.; Kjell, D. P. Hydrazine and aqueous hydrazine
solutions: Evaluating safety in chemical processes Org. Process Res. Dev.
2013, 17, 1580.
(16) For additional examples, including alkyl substituted allyic alchols
see supporting information.
(17) (a) Follett, E. A. C.; Pennington, T. H. Antiviral effect of constituent
parts of the rifampicin molecule. Nature 1971, 230, 117. (b) Woo, L. W. L.;
Bubert, C.; Sutcliffe, O. B.; Smith, A.; Chander, S. K.; Mahon, M. F.;
Purohit, A.; Reed, M. J.; Potter; B. V. L. Dual aromatase-steroid sulfatase
inhibitors. J. Med. Chem. 2007, 50, 3540.
(18) Hydrazine has been shown to reduce salts and complexes of
transition metals. For examples see: (a) Demir, M. M.; Gulgun, M. A.;
Menceloglu, Y. Z.; Erman, B.; Abramchuk, S. S.; Makhaeva, E. E.;
Khokhlov, A. R.; Matveeva, V. G.; Sulman, M. G. Palladium nanoparticles
by electronspinning from poly(acrylonitrile-co-acrylic acid)PdCl2
solutions. Relations between preparation conditions, particle size and
catalytic activity. Macromolecules 2004, 37, 1787. (b) Wang, Y.; Shi, Y.-
F.; Chen, Y.-B.; Wu, L.-M. Hydrazine reduction of metal ions to porous
submicro-structures of Ag, Pd, Cu, Ni, and Bi. J. Solid State Chem. 2012,
191, 19.
(19) For selected examples of diastereoselective [3+2] cycloadditions
using nitrones derived from chiral N-alkylated hydroxylamines see: (a)
Smith, A. L.; Williams, S. F.; Homes, A. B.; Huges, L. R.; Swithenbank,
C.; Lidert, Z. Stereoselective synthesis of (.+-.)-indolizidines 167B, 205A,
and 207A. Enantioselective synthesis of (-)-indolizidine 209B. J. Am.
Chem. Soc. 1988, 110, 8696. (b) Xu, Z.; Johannes, C. W.; Salman, S. S.;
Hoveyda, A. H. Enantioselective total synthesis of antifungal agent Sch
38516 J. Am. Chem. Soc. 1996, 118, 10926. (c) Snider, B. B.; Lin, H. Total
synthesis of (−)-FR901483. J. Am. Chem. Soc. 1999, 121, 7778. (d) White
J. D.; Hansen, J. D. Asymmetric synthesis of epicylindrospermopsin via
intramolecular nitrone cycloaddition. Assignement of absolute
configuration. J. Am. Chem. Soc. 2002, 124, 4950.
(8) Cabrera, J. M.; Tauber, J.; Zhang, W.; Xiang, M.; Krishe, M. J.
Selection between diastereomeric kinetic vs thermodynamic carbonyl
binding modes enables enantioselective iridium-catalyzed anti-(α-
Aryl)allylation of aqueous fluoral hydrate and difluoroacetaldehyde ethyl
hemiacetal. J. Am. Chem. Soc. 2018, 140, 9392.
(20) Adamopoulou, T.; Papadaki, M. I.; Kounalakis, M.; Vazquez-
Carreto, V.; Pineda-Solano, A.; Wang, Q.; Mannan, M. S. Thermal
decomposition of hydroxylamine: Isoperibolic calorimetric measurements
at different conditions. J. Hazard. Mater. 2013, 254, 382.
(21) Chen, J.; Liang, Q.; Zhao, X. Chemoselective, regioselective, and
enantioselective allylations of NH2OH under iridium catalysis. Org. Lett.
2019, published online DOI:10.1021/acs.orglett.9b01357.
(9) (b) Day, A. C.; Whiting, M. C. Acetone hydrazine. Org. Synth. 1970,
50, 3. (b) Semon, W. L. The preparation of hydroxylamine hydrochloride
and acetoxime. J. Am. Chem. Soc. 1923, 45, 188.
(10) For control experiments using 18OH2 demonstrating that water can
act as a competing nucleophile see supporting information. For an example
ACS Paragon Plus Environment